Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
MethodsX ; 12: 102743, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38799035

RESUMO

The Caenorhabditis elegans egg hatching methodology is a valuable tool for assessing the anthelmintic activity of drugs and compounds and evaluating anthelmintic drug efficacy. Isolated eggs from gravid adults are exposed to different concentrations of selected drugs and the percentage of egg hatching is determined with respect to the control condition. The assay allows the construction of concentration-response curves and determination of EC50 or EC90 values for egg hatching inhibition. Also, it allows measurements of inhibition as a function of time of exposure. This approach addresses the urgent need for new anthelmintics, as resistance to current treatments poses a significant challenge in parasitic nematode infection. This resistance not only affects humans but also animals and plants, causing significant economic losses in livestock farming and agriculture. By using the free-living nematode C. elegans as a parasitic model organism, researchers can efficiently screen for potential treatments and assess drug combinations for synergistic effects. Importantly, this assay offers a cost-effective and accessible alternative to traditional methods, eliminating the need for specialized infrastructure, hosts, and trained animal maintenance personnel. Additionally, the methodology closely mimics natural conditions, providing insights into egg development and potential therapeutic targets. This method allows for evaluating the direct negative impact of drugs on egg hatching, which correlates with long-term anthelmintic effects, offering advantages in preventing or reducing the transmission and spread of worm infections by eggs. Overall, this approach represents a significant advancement for anthelmintic discovery, offering both practical applications and avenues for further scientific research. •The C. elegans egg hatching assay is a robust and effective method for assessing the anthelmintic potential of various drugs and compounds, allowing the generation of concentration-response curves.•By leveraging the free-living nematode C. elegans as a parasitic model organism, this method facilitates efficient screening of potential treatments and evaluation of drug combinations.•The method addresses the urgent need for new anthelmintics, offering a cost-effective and accessible alternative to traditional approaches.

2.
Biophys Rev ; 15(4): 733-750, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37681094

RESUMO

Cys-loop receptors integrate a large family of pentameric ligand-gated ion channels that mediate fast ionotropic responses in vertebrates and invertebrates. Their vital role in converting neurotransmitter recognition into an electrical impulse makes these receptors essential for a great variety of physiological processes. In vertebrates, the Cys-loop receptor family includes the cation-selective channels, nicotinic acetylcholine and 5-hydroxytryptamine type 3 receptors, and the anion-selective channels, GABAA and glycine receptors, whereas in invertebrates, the repertoire is significantly larger. The free-living nematode Caenorhabditis elegans has the largest known Cys-loop receptor family as well as unique receptors that are absent in vertebrates and constitute attractive targets for anthelmintic drugs. Given the large number and variety of Cys-loop receptor subunits and the multiple possible ways of subunit assembly, C. elegans offers a large diversity of receptors although only a limited number of them have been characterized to date. C. elegans has emerged as a powerful model for the study of the nervous system and human diseases as well as a model for antiparasitic drug discovery. This nematode has also shown promise in the pharmaceutical industry search for new therapeutic compounds. C. elegans is therefore a powerful model organism to explore the biology and pharmacology of Cys-loop receptors and their potential as targets for novel therapeutic interventions. In this review, we provide a comprehensive overview of what is known about the function of C. elegans Cys-loop receptors from an electrophysiological perspective.

3.
Pharmacol Res ; 190: 106712, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36863428

RESUMO

Nicotinic acetylcholine receptors (nAChRs) comprise a family of pentameric ligand-gated ion channels widely distributed in the central and peripheric nervous system and in non-neuronal cells. nAChRs are involved in chemical synapses and are key actors in vital physiological processes throughout the animal kingdom. They mediate skeletal muscle contraction, autonomic responses, contribute to cognitive processes, and regulate behaviors. Dysregulation of nAChRs is associated with neurological, neurodegenerative, inflammatory and motor disorders. In spite of the great advances in the elucidation of nAChR structure and function, our knowledge about the impact of post-translational modifications (PTMs) on nAChR functional activity and cholinergic signaling has lagged behind. PTMs occur at different steps of protein life cycle, modulating in time and space protein folding, localization, function, and protein-protein interactions, and allow fine-tuned responses to changes in the environment. A large body of evidence demonstrates that PTMs regulate all levels of nAChR life cycle, with key roles in receptor expression, membrane stability and function. However, our knowledge is still limited, restricted to a few PTMs, and many important aspects remain largely unknown. There is thus a long way to go to decipher the association of aberrant PTMs with disorders of cholinergic signaling and to target PTM regulation for novel therapeutic interventions. In this review we provide a comprehensive overview of what is known about how different PTMs regulate nAChR.


Assuntos
Receptores Nicotínicos , Animais , Receptores Nicotínicos/genética , Transdução de Sinais/fisiologia , Transmissão Sináptica , Colinérgicos , Processamento de Proteína Pós-Traducional
4.
J Biol Chem ; 298(9): 102356, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35952761

RESUMO

Anthelmintics are used to treat human and veterinary parasitic diseases and to reduce crop and livestock production loss associated with parasitosis. The free-living nematode Caenorhabditis elegans, a model system for anthelmintic drug discovery, has a serotonin (5-HT)-gated chloride channel, MOD-1, which belongs to the Cys-loop receptor family and modulates locomotory and behavioral functions. Since MOD-1 is unique to nematodes, it is emerging as an attractive anthelmintic drug target, but details of MOD-1 function are unclear. Here, we revealed novel aspects of MOD-1 function from the molecular level to the organism level and identified compounds targeting this receptor, which may provide new directions for anthelmintic drug discovery. We used whole-cell current recordings from heterologously expressed MOD-1 to show that tryptamine (Tryp), a weak partial agonist of vertebrate serotonin type 3 (5-HT3) receptors, efficaciously activates MOD-1. A screen for modulators revealed that GABAergic ligands piperazine (PZE) and muscimol reduce 5-HT-elicited currents, thus identifying novel MOD-1 allosteric inhibitors. Next, we performed locomotor activity assays, and we found 5-HT and Tryp rapidly decrease worm motility, which is reversible only at low 5-HT concentrations. Mutants lacking MOD-1 are partially resistant to both drugs, demonstrating its role in locomotion. Acting as an antagonist of MOD-1, we showed PZE reduces the locomotor effects of exogenous 5-HT. Therefore, Tryp- and PZE-derived compounds, acting at MOD-1 through different molecular mechanisms, emerge as promising anthelmintic agents. This study enhances our knowledge of the function and drug selectivity of Cys-loop receptors and postulates MOD-1 as a potential target for anthelmintic therapy.


Assuntos
Anti-Helmínticos , Receptores de Canais Iônicos de Abertura Ativada por Ligante com Alça de Cisteína , Nematoides , Animais , Anti-Helmínticos/farmacologia , Caenorhabditis elegans/genética , Canais de Cloreto/genética , Humanos , Muscimol/farmacologia , Piperazinas/farmacologia , Serotonina/farmacologia
5.
PLoS Negl Trop Dis ; 13(11): e0007895, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31765374

RESUMO

The anthelmintic treatment of nematode infections remains the pillar of worm control in both human and veterinary medicine. Since control is threatened by the appearance of drug resistant nematodes, there is a need to develop novel compounds, among which phytochemicals constitute potential anthelmintic agents. Caenorhabditis elegans has been pivotal in anthelmintic drug discovery and in revealing mechanisms of drug action and resistance. By using C. elegans, we here revealed the anthelmintic actions of three plant terpenoids -thymol, carvacrol and eugenol- at the behavioral level. Terpenoids produce a rapid paralysis of worms with a potency rank order carvacrol > thymol > eugenol. In addition to their paralyzing activity, they also inhibit egg hatching, which would, in turn, lead to a broader anthelmintic spectrum of activity. To identify drug targets, we performed an in vivo screening of selected strains carrying mutations in receptors involved in worm locomotion for determining resistance to the paralyzing effect of terpenoids. The assays revealed that two Cys-loop receptors with key roles in worm locomotion -Levamisole sensitive nicotinic receptor (L-AChR) and GABA(A) (UNC-49) receptor- are involved in the paralyzing effects of terpenoids. To decipher the mechanism by which terpenoids affect these receptors, we performed electrophysiological studies using a primary culture of C. elegans L1 muscle cells. Whole cell recordings from L1 cells demonstrated that terpenoids decrease macroscopic responses of L-AChR and UNC-49 receptor to their endogenous agonists, thus acting as inhibitors. Single-channel recordings from L-AChR revealed that terpenoids decrease the frequency of opening events, probably by acting as negative allosteric modulators. The fact that terpenoids act at different receptors may have important advantages regarding efficacy and development of resistance. Thus, our findings give support to the use of terpenoids as either an alternative or a complementary anthelmintic strategy to overcome the ever-increasing resistance of parasites to classical anthelmintic drugs.


Assuntos
Anti-Helmínticos/farmacologia , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/enzimologia , Receptores de Canais Iônicos de Abertura Ativada por Ligante com Alça de Cisteína/antagonistas & inibidores , Terpenos/farmacologia , Animais , Células Cultivadas , Locomoção/efeitos dos fármacos , Células Musculares/efeitos dos fármacos
6.
Mol Pharmacol ; 94(5): 1270-1279, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30190363

RESUMO

Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels involved in neuromuscular transmission. In nematodes, muscle nAChRs are targets of antiparasitic drugs. Bephenium is an anthelmintic compound whose molecular action in the free-living nematode Caenorhabditis elegans, which is a model for anthelmintic drug discovery, is poorly known. We explored the effect of bephenium on C. elegans locomotion and applied single-channel recordings to identify its molecular target, mechanism of action, and selectivity between mammalian and C. elegans nAChRs. As in parasites, bephenium paralyzes C. elegans A mutant strain lacking the muscle levamisole-sensitive nAChR (L-AChR) shows full resistance to bephenium, indicating that this receptor is the target site. Bephenium activates L-AChR channels from larvae muscle cells in the micromolar range. Channel activity is similar to that elicited by levamisole, appearing mainly as isolated brief openings. Our analysis revealed that bephenium is an agonist of L-AChR and an open-channel blocker at higher concentrations. It also activates mammalian muscle nAChRs. Opening events are significantly briefer than those elicited by ACh and do not appear in activation episodes at a range of concentrations, indicating that it is a very weak agonist of mammalian nAChRs. Recordings in the presence of ACh showed that bephenium acts as a voltage-dependent channel blocker and a low-affinity agonist. Molecular docking into homology-modeled binding-site interfaces represent the binding mode of bephenium that explains its partial agonism. Given the great diversity of helminth nAChRs and the overlap of their pharmacological profiles, unraveling the basis of drug receptor-selectivity will be required for rational design of anthelmintic drugs.


Assuntos
Anti-Helmínticos/farmacologia , Compostos de Befênio/farmacologia , Caenorhabditis elegans/metabolismo , Levamisol/farmacologia , Receptores Nicotínicos/efeitos dos fármacos , Animais , Anti-Helmínticos/química , Comportamento Animal/efeitos dos fármacos , Compostos de Befênio/química , Sítios de Ligação , Caenorhabditis elegans/efeitos dos fármacos , Concentração Inibidora 50 , Técnicas de Patch-Clamp , Relação Estrutura-Atividade
7.
PLoS One ; 9(4): e95072, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24743647

RESUMO

The prevalence of human and animal helminth infections remains staggeringly high, thus urging the need for concerted efforts towards this area of research. GABA receptors, encoded by the unc-49 gene, mediate body muscle inhibition in Caenorhabditis elegans and parasitic nematodes and are targets of anthelmintic drugs. Thus, the characterization of nematode GABA receptors provides a foundation for rational anti-parasitic drug design. We therefore explored UNC-49 channels from C. elegans muscle cultured cells of the first larval stage at the electrophysiological and behavioral levels. Whole-cell recordings reveal that GABA, muscimol and the anthelmintic piperazine elicit macroscopic currents from UNC-49 receptors that decay in their sustained presence, indicating full desensitization. Single-channel recordings show that all drugs elicit openings of ∼2.5 pA (+100 mV), which appear either as brief isolated events or in short bursts. The comparison of the lowest concentration required for detectable channel opening, the frequency of openings and the amplitude of macroscopic currents suggest that piperazine is the least efficacious of the three drugs. Macroscopic and single-channel GABA-activated currents are profoundly and apparently irreversibly inhibited by ivermectin. To gain further insight into ivermectin action at C. elegans muscle, we analyzed its effect on single-channel activity of the levamisol-sensitive nicotinic receptor (L-AChR), the excitatory receptor involved in neuromuscular transmission. Ivermectin produces a profound inhibition of the frequency of channel opening without significant changes in channel properties. By revealing that ivermectin inhibits C. elegans muscle GABA and L-AChR receptors, our study adds two receptors to the already known ivermectin targets, thus contributing to the elucidation of its pleiotropic effects. Behavioral assays in worms show that ivermectin potentiates piperazine-induced paralysis, thus suggesting that their combination is a good strategy to overcome the increasing resistance of parasites, an issue of global concern for human and animal health.


Assuntos
Antiparasitários/farmacologia , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Ivermectina/farmacologia , Junção Neuromuscular/metabolismo , Receptores de GABA/metabolismo , Animais , Humanos , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia
8.
Mol Pharmacol ; 82(3): 550-60, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22734069

RESUMO

Caenorhabditis elegans muscle contains seven different nicotinic receptor (AChR) subunits, five of which have been shown to be components of adult levamisole-sensitive AChRs (L-AChRs). To elucidate the reason for such subunit diversity, we explore their functional roles in larva 1 (L1) muscle cells. Single-channel and macroscopic current recordings reveal that the α-type LEV-8 subunit is a component of native L1 L-AChRs but behaves as a nonessential subunit. It plays a key role in maintaining a low rate and extent of desensitization of L-AChRs. In the absence of the α-type ACR-8 subunit, L-AChR channel properties are not modified, thus indicating that ACR-8 is not a component of L1 L-AChRs. Together with our previous findings, this study reveals that L1 muscle cells express a main L-AChR type composed of five different subunits: UNC-38, UNC-63, UNC-29, LEV-1, and LEV-8. Analysis of a double lev-8; acr-8-null mutant, which shows an uncoordinated and levamisole-resistant phenotype, reveals that ACR-8 can replace LEV-8 in its absence, thus attributing a functional role to this subunit. Docking into homology modeled L-AChRs proposes that ACh forms the typical cation-π interaction, suggests why levamisole is less efficacious than ACh, and shows that ACR-8 can form activatable binding-sites, thus opening doors for elucidating subunit arrangement and anthelmintic selectivity.


Assuntos
Caenorhabditis elegans/metabolismo , Levamisol/farmacologia , Células Musculares/efeitos dos fármacos , Células Musculares/metabolismo , Receptores Nicotínicos/metabolismo , Acetilcolina/farmacologia , Animais , Antirreumáticos/farmacologia , Sítios de Ligação/efeitos dos fármacos , Sítios de Ligação/genética , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Larva/efeitos dos fármacos , Larva/genética , Larva/metabolismo , Músculos/efeitos dos fármacos , Músculos/metabolismo , Mutação/genética , Fenótipo , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Receptores Nicotínicos/genética
9.
Mol Pharmacol ; 71(5): 1407-15, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17314321

RESUMO

Nicotinic acetylcholine receptors (nAChRs) are pentameric neurotransmitter-gated ion channels that mediate synaptic transmission throughout the nervous system in vertebrates and invertebrates. Caenorhabditis elegans is a nonmammalian model for the study of the nervous system and a model of parasitic nematodes. Nematode muscle nAChRs are of considerable interest because they are targets for anthelmintic drugs. We show single-channel activity of C. elegans muscle nAChRs for the first time. Our results reveal that in the L1 larval stage acetylcholine (ACh) activates mainly a levamisole-sensitive nAChR (L-AChR). A single population of 39 pS channels, which are 5-fold more sensitive to levamisole than ACh, is detected. In contrast to mammalian nAChRs, open durations are longer for levamisole than for ACh. Studies in mutant strains reveal that UNC-38, UNC-63, and UNC-29 subunits are assembled into a single L-AChR in the L1 stage and that these subunits are irreplaceable, suggesting that they are vital for receptor function throughout development. Recordings from a strain mutated in the LEV-1 subunit show a main population of channels with lower conductance (26 pS), prolonged open durations, and reduced sensitivity to levamisole. Thus, although LEV-1 is preferentially incorporated into native L-AChRs, receptors lacking this subunit can still function. No single-channel activity from levamisole-insensitive nAChRs is detected. Thus, during neuromuscular transmission in C. elegans, the majority of ACh-activated current flows through L-AChRs. This study contributes to the understanding of the molecular mechanisms underlying functional diversity of the nAChR family and offers an excellent strategy to test novel antiparasitic drugs.


Assuntos
Caenorhabditis elegans/metabolismo , Ativação do Canal Iônico , Músculos/metabolismo , Receptores Nicotínicos/metabolismo , Acetilcolina/farmacologia , Animais , Caenorhabditis elegans/efeitos dos fármacos , Proteínas de Caenorhabditis elegans/genética , Ativação do Canal Iônico/efeitos dos fármacos , Levamisol/farmacologia , Morantel/farmacologia , Músculos/efeitos dos fármacos , Proteínas Mutantes/metabolismo , Pirantel/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA