Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(5)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38475257

RESUMO

The development of injectable hydrogels with natural biopolymers such as gelatin (Ge) and hyaluronic acid (Ha) is widely performed due to their biocompatibility and biodegradability. The combination of both polymers crosslinked with N-Ethyl-N'-(3-dimethyl aminopropyl) carbodiimide hydrochloride (EDC) can be used as an innovative dermal filler that stimulates fibroblast activity and increases skin elasticity and tightness. Thus, crosslinked Ge/Ha hydrogels with different concentrations of EDC were administered subcutaneously to test their efficacy in young and old rats. At higher EDC concentrations, the viscosity decreases while the particle size of the hydrogels increases. At all concentrations of EDC, amino and carboxyl groups are present. The histological analysis shows an acute inflammatory response, which disappears seven days after application. At one and three months post-treatment, no remains of the hydrogels are found, and the number of fibroblasts increases in all groups in comparison with the control. In addition, the elastic modulus of the skin increases after three months of treatment. Because EDC-crosslinked Ge/Ha hydrogels are biocompatible and induce increased skin tension, fibroblast proliferation, and de novo extracellular matrix production, we propose their use as a treatment to attenuate wrinkles and expression lines.

2.
Polymers (Basel) ; 14(21)2022 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-36365602

RESUMO

The half-time of cells and molecules used in immunotherapy is limited. Scaffolds-based immunotherapy against cancer may increase the half-life of the molecules and also support the migration and activation of leukocytes in situ. For this purpose, the use of gelatin (Ge)/hyaluronic acid (HA) scaffolds coupled to CpG and the tumor antigen MAGE-A5 is proposed. Ge and HA are components of the extracellular matrix that stimulate cell adhesion and activation of leucocytes; CpG can promote dendritic cell maturation, and MAGE-A5 a specific antitumor response. C57BL/6 mice were treated with Ge/HA/scaffolds coupled to MAGE-A5 and/or CpG and then challenged with the B16-F10 melanoma cell line. Survival, tumor growth rate and the immune response induced by the scaffolds were analyzed. Ge/HA/CpG and Ge/HA/MAGE-A5 mediated dendritic cell maturation and macrophage activation, increased survival, and decreased the tumor growth rate and a tumor parenchyma with abundant cell death areas and abundant tumor cells with melanin granules. Only the scaffolds coupled to MAGE-A5 induced the activation of CD8 T cells. In conclusion, Ge/HA scaffolds coupled to CpG or MAGE-A5, but not the mixture, can induce a successful immune response capable of promoting tumor cell clearance and increased survival.

3.
Molecules ; 27(4)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35209237

RESUMO

Dendritic cells are antigen-presenting cells, which identify and process pathogens to subsequently activate specific T lymphocytes. To regulate the immune responses, DCs have to mature by the recognition of TLR ligands, TNFα or IFNγ. These ligands have been used as adjuvants to activate DCs in situ or in vitro, with toxic effects. It has been shown that some molecules affect the immune system, e.g., Masticadienonic acid (MDA) and 3α-hydroxy masticadienoic acid (3α-OH MDA) triterpenes naturally occurring in several medicinal plants, since they activate the nitric oxide synthase in macrophages and induce T lymphocyte proliferation. The DCs maturation induced by MDA or 3a-OH MDA was determined by incubating these cells with MDA or 3α-OH MDA, and their phenotype was afterwards analyzed. The results showed that only 3α-OH MDA was able to induce DCs maturation. When mice with melanoma were inoculated with DCs/3α-OH MDA, a decreased tumor growth rate was observed along with an extended cell death area within tumors compared to mice treated with DCs incubated with MDA. In conclusion, it is proposed that 3α-OH MDA may be an immunostimulant molecule. Conversely, it is proposed that MDA may be a molecule with anti-inflammatory properties.


Assuntos
Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Fatores Imunológicos/química , Fatores Imunológicos/farmacologia , Imunomodulação/efeitos dos fármacos , Triterpenos/química , Triterpenos/farmacologia , Animais , Biomarcadores , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Dendríticas/metabolismo , Modelos Animais de Doenças , Imunofenotipagem , Camundongos , Estrutura Molecular , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Sci Rep ; 11(1): 21193, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34707201

RESUMO

Endothelial dysfunction (ED) is a key factor for the development of cardiovascular diseases. Due to its chronic, life-threatening nature, ED only can be studied experimentally in animal models. Therefore, this work was aimed to characterize a murine model of ED induced by a daily intraperitoneal administration of angiotensin II (AGII) for 10 weeks. Oxidative stress, inflammation, vascular remodeling, hypertension, and damage to various target organs were evaluated in treated animals. The results indicated that a chronic intraperitoneal administration of AGII increases the production of systemic soluble VCAM, ROS and ICAM-1 expression, and the production of TNFα, IL1ß, IL17A, IL4, TGFß, and IL10 in the kidney, as well as blood pressure levels; it also promotes vascular remodeling and induces non-alcoholic fatty liver disease, glomerulosclerosis, and proliferative retinopathy. Therefore, the model herein proposed can be a representative model for ED; additionally, it is easy to implement, safe, rapid, and inexpensive.


Assuntos
Angiotensina II/administração & dosagem , Modelos Animais de Doenças , Endotélio Vascular/metabolismo , Doenças Vasculares/metabolismo , Angiotensina II/toxicidade , Animais , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/patologia , Infusões Parenterais , Molécula 1 de Adesão Intercelular/metabolismo , Interleucinas/metabolismo , Rim/metabolismo , Rim/patologia , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Fator de Crescimento Transformador beta/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo , Doenças Vasculares/etiologia , Doenças Vasculares/patologia , Remodelação Vascular
5.
J Tissue Eng ; 10: 2041731419840622, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31007888

RESUMO

Mesenchymal stem cells isolated from different tissues should share associated markers and the capability to differentiate to mesodermal lineages. However, their behavior varies in specific microenvironments. Herein, adhesion and fibrinolytic activity of mesenchymal stem cells from placenta, bone marrow, and Wharton's jelly were evaluated in fibrin hydrogels prepared with nonpurified blood plasma and compared with two-dimensional cultures. Despite the source, mesenchymal stem cells adhered through focal adhesions positive for vinculin and integrin αV in two dimensions, while focal adhesions could not be detected in fibrin hydrogels. Moreover, some cells could not spread and stay rounded. The proportions of elongated and round phenotypes varied, with placenta mesenchymal stem cells having the lowest percentage of elongated cells (~10%). Mesenchymal stem cells degraded fibrin at distinct rates, and placenta mesenchymal stem cells had the strongest fibrinolytic activity, which was achieved principally through the plasminogen-plasmin axis. These findings might have clinical implications in tissue engineering and wound healing therapy.

6.
Molecules ; 22(9)2017 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-28878179

RESUMO

The triterpenes have been constituted as a group of interesting molecules as possible antitumor agents. Despite several of them not presenting a potent cytotoxic activity in vitro against cancer cells, in vivo in xenotransplant tumors studies, they show promising results. Based on the above considerations, we investigated the antitumor activity of both masticadienonic (MDA) and 3α-OH masticadienoic (3α-OH MDA) acids in a mouse prostate cancer xenograft model. Immunohistochemical assays were used to evaluate the decrease in the expression of the Proliferating Cell Nuclear Antigen (PCNA) and the Ki-67 induced by MDA and 3α-OH MDA. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay was performed to demonstrate the fragmentation of DNA. Our results showed that the two triterpenes inhibited tumor growth, had anti-proliferative effect in vivo and induced cell death by apoptosis. Collectively, our data suggested that the antitumor mechanism of MDA and 3α-OH MDA involves several molecular targets related to cell proliferation and apoptosis.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias da Próstata/tratamento farmacológico , Triterpenos/farmacologia , Animais , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Xenoenxertos , Humanos , Masculino , Camundongos , Camundongos Nus , Transplante de Neoplasias , Neoplasias da Próstata/patologia , Triterpenos/química
8.
J Immunol Res ; 2014: 158980, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25759825

RESUMO

The aim of dendritic cell (DC) vaccination in cancer is to induce tumor-specific effector T cells that may reduce and control tumor mass. Immunostimulants that could drive a desired immune response are necessary to be found in order to generate a long lasting tumor immune response. GK-1 peptide, derived from Taenia crassiceps, induces not only increase in TNFα, IFNγ, and MCP-1 production in cocultures of DCs and T lymphocytes but also immunological protection against influenza virus. Moreover, the aim of this investigation is the use of GK-1 as a bone marrow DCs (BMDCs) immunostimulant targeted with MAGE antigen; thus, BMDC may be used as immunotherapy against murine melanoma. GK-1 induced in BMDCs a meaningful increment of CD86 and IL-12. In addition, the use of BMDCs TNFα/GK-1/MAGE-AX induced the highest survival and the smallest tumors in mice. Besides, the treatment helped to increase CD8 lymphocytes levels and to produce IFNγ in lymph nodes. Moreover, the histopathological analysis showed that BMDCs treated with GK-1/TNFα and loaded with MAGE-AX induced the apparition of more apoptotic and necrotic areas in tumors than in mice without treatment. These results highlight the properties of GK-1 as an immunostimulant of DCs and suggest as a potential candidate the use of this immunotherapy against cancer disease.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Vacinas Anticâncer , Células Dendríticas/imunologia , Proteínas de Helminto/metabolismo , Melanoma Experimental/terapia , Fragmentos de Peptídeos/metabolismo , Neoplasias Cutâneas/terapia , Animais , Antígenos de Neoplasias/metabolismo , Células da Medula Óssea/imunologia , Técnicas de Cultura de Células , Técnicas de Cocultura , Citocinas/metabolismo , Humanos , Ativação Linfocitária , Masculino , Melanoma Experimental/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Transplante de Neoplasias , Oligopeptídeos/metabolismo , Neoplasias Cutâneas/imunologia , Carga Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA