Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 12(7)2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39065188

RESUMO

Toxoplasma gondii (T. gondii) is the causal agent of toxoplasmosis. It may produce severe damage in immunocompromised individuals, as well as congenital infection and intrauterine growth restriction (IUGR). Previous reports have associated interleukin IL-33 with miscarriage, fetal damage, and premature delivery due to infections with various microorganisms. However, IL-33 has not been associated with congenital toxoplasmosis. The sST2 receptor has been reported in patients who have had recurrent miscarriages. On the other hand, IL-1ß was not found in acute Toxoplasma infection. Our aim was to analyze the associations between the serum levels of IL-33 and IL-1ß in IUGR and toxoplasmosis during pregnancy. Eighty-four serum samples from pregnant women who had undergone 26 weeks of gestation were grouped as follows: with anti-Toxoplasma antibodies, without anti-Toxoplasma antibodies, IUGR, and the control group. IgG and IgM anti-T. gondii antibodies, as well as IL-33, ST2, and IL-1ß, were determined using an ELISA assay. Statistical analyses were performed using the Pearson and Chi-square correlation coefficients, as well as the risk factors and Odds Ratios (ORs), with a confidence interval of 95% (CI 95). The results showed that 15/84 (17.8%) of cases were positive for IgG anti-Toxoplasma antibodies and 2/84 (2.38%) of cases were positive for IgM. A statistically significant difference was found between IUGR and IL-33 (p < 0.001), as well as between ST2 and IUGR (p < 0.001). In conclusion, IUGR was significantly associated with IL-33 and ST2 positivity based on the overall IUGR grade. No significant association was found between IUGR and the presence of anti-Toxoplasma antibodies. There was no association between IL-1ß and IUGR. More research is needed to strengthen the utility of IL-33 and ST2 as biomarkers of IUGR.

2.
Int J Mol Sci ; 25(12)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38928125

RESUMO

Leptin regulates lipid metabolism, maximizing insulin sensitivity; however, peripheral leptin resistance is not fully understood, and its contribution to metabolic dysfunction-associated steatotic liver disease (MASLD) is unclear. This study evaluated the contribution of the leptin axis to MASLD in humans. Forty-three participants, mostly female (86.04%), who underwent cholecystectomy were biopsied. Of the participants, 24 were healthy controls, 8 had MASLD, and 11 had metabolic dysfunction-associated steatohepatitis (MASH). Clinical and biochemical data and the gene expression of leptin, leptin receptor (LEPR), suppressor of cytokine signaling 3 (SOCS3), sterol regulatory element-binding transcription factor 1 (SREBF1), stearoyl-CoA desaturase-1 (SCD1), and patatin-like phospholipase domain-containing protein 2 (PNPLA2), were determined from liver and adipose tissue. Higher serum leptin and LEPR levels in the omental adipose tissue (OAT) and liver with MASH were found. In the liver, LEPR was positively correlated with leptin expression in adipose tissue, and SOCS3 was correlated with SREBF1-SCD1. In OAT, SOCS3 was correlated with insulin resistance and transaminase enzymes (p < 0.05 for all. In conclusion, we evidenced the correlation between the peripheral leptin resistance axis in OAT-liver crosstalk and the complications of MASLD in humans.


Assuntos
Tecido Adiposo , Fígado Gorduroso , Leptina , Fígado , Omento , Humanos , Leptina/metabolismo , Feminino , Masculino , Fígado/metabolismo , Pessoa de Meia-Idade , Omento/metabolismo , Omento/patologia , Tecido Adiposo/metabolismo , Adulto , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Receptores para Leptina/metabolismo , Receptores para Leptina/genética , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/genética , Resistência à Insulina , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Estearoil-CoA Dessaturase/metabolismo , Estearoil-CoA Dessaturase/genética
3.
Antioxidants (Basel) ; 13(3)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38539859

RESUMO

Millions of people around the world are exposed to air pollutants, such as particulate matter 2.5 (PM2.5) and ozone (O3). Such exposure usually does not exclude these two types of pollutants and their harmful effects could be additive or synergistic. O3 is a highly oxidizing gas that reacts with the cellular environment just as PM2.5, triggering nitrooxidative damage. Once nitrooxidative stress overcomes the endogenous antioxidant system, an acute neuroinflammatory process is generated, and once it becomes chronic, it favors the formation of neurodegenerative disease markers. The presence of these markers becomes potentially dangerous in people who have a genetic predisposition and are at a higher risk of developing neurodegenerative diseases such as Alzheimer's and Parkinson's. Our experimental approach for nitrooxidative damage and neuroinflammation caused by air pollutants has focused on the exposure of rats to O3 in an isolated chamber. The hippocampus is the most studied brain structure because of its neuronal connectivity network with the olfactory epithelium, its weak antioxidant defense, and its fundamental roll in cognitive processes. However, other brain structures may exhibit a different degree of damage upon exposure to O3 and PM2.5, making their involvement an important factor in developing other CNS diseases. The age spectrum for augmented sensibility to air pollutants seems to mostly affect the pre-postnatal (autism spectrum) period and the elderly (neurodegenerative). Thus, a new approach could be the estimation of the damage caused by PM2.5 and O3 through a controlled exposure paradigm to determine the extent of damage caused by both pollutants.

4.
World J Diabetes ; 14(7): 977-994, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37547586

RESUMO

Obesity and type 2 diabetes mellitus (T2DM) are chronic pathologies with a high incidence worldwide. They share some pathological mechanisms, including hyperinsulinemia, the production and release of hormones, and hyperglycemia. The above, over time, affects other systems of the human body by causing tissue hypoxia, low-grade inflammation, and oxidative stress, which lay the pathophysiological groundwork for cancer. The leading causes of death globally are T2DM and cancer. Other main alterations of this pathological triad include the accumulation of advanced glycation end products and the release of endogenous alarmins due to cell death (i.e., damage-associated molecular patterns) such as the intracellular proteins high-mobility group box protein 1 and protein S100 that bind to the receptor for advanced glycation products (RAGE) - a multiligand receptor involved in inflammatory and metabolic and neoplastic processes. This review analyzes the latest advanced reports on the role of RAGE in the development of obesity, T2DM, and cancer, with an aim to understand the intracellular signaling mechanisms linked with cancer initiation. This review also explores inflammation, oxidative stress, hypoxia, cellular senescence, RAGE ligands, tumor microenvironment changes, and the "cancer hallmarks" of the leading tumors associated with T2DM. The assimilation of this information could aid in the development of diagnostic and therapeutic approaches to lower the morbidity and mortality associated with these diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA