Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Med Food ; 27(4): 379-384, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38507677

RESUMO

Mushrooms of the genus Pleurotus have shown nematophagous activity as it produces many chemical compounds and enzymes affecting parasitic nematodes. This study aimed to extract the inhibitory activity of the five strains of the fungus Pleurotus spp. It was evaluated against eggs and larvae of Haemonchus contortus. The extract of P. ostreatus obtained the highest level of inhibition of eggs at 97.6% (1341 µg/mL) followed by P. pulmonarius (EPP) at 81.2% (774 µg/mL). The extract selected for evaluation against larvae was P. pulmonarius, showing no effect for L3 larvae, but for L4 larvae an immobility effect of 56.93% was observed at 900 µg/mL. The protein profile showed the presence of 23 protein bands in the extract. The crude extract of P. pulmonarius showed degradation of tissues both inside the eggs and larvae L1. Metabolites produced by Pleurotus mushrooms can consider using in agriculture sustainable by utilizing in producing of ovicidal and larvicidal against H. contortus instead of chemical compounds.


Assuntos
Agaricales , Haemonchus , Pleurotus , Animais , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Larva
2.
Microorganisms ; 11(10)2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37894229

RESUMO

Entomopathogenic nematodes have been used in biological control for some time and are an alternative for the control of insect pests, but during their implementation, situations have arisen that can be improved. These vary with each species and include their production and storage. Oscheius myriophila, an entomopathogenic nematode (EPN), was monitored for its performance when produced in vivo, as well as its development using Galleria mellonella larvae, using the MC5-2014 strain isolated from soil samples in the municipality of Tepalcingo, Morelos, México. For a study with native strains of EPNs, a wide range of tests must be conducted because the required conditions can be very specific. In vivo production was quantified at initial infective juvenile (IJ) inocula of 50, 100 and 500, and we obtained the same production for the three inocula. The life cycle of the EPNs lasted 12 days, and two generations were observed in which adults were found at days 5 and 9. Both evaluations were performed at a temperature of 27 °C in G. mellonella larvae. In addition, the temperatures of 8, 12, 20 and 24 °C were evaluated for their storage, and we observed that the EPNs can be kept for at least 6 months, maintaining a survival rate of 58.67% and a good infective capacity at a temperature of 12 °C, remaining above 60%.

3.
Pathogens ; 11(9)2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36145456

RESUMO

The nematocidal activity of an Oxalis tetraphylla hydroalcoholic extract against the nematode Haemonchus contortus (Hc) was assessed in vitro and the major compounds associated with nematocidal activity were identified. One hydroalcoholic extract was obtained from O. tetraphylla stems and leaves (Ot HE-SLE). The in vitro lethal concentrations (LC50 and LC90) against both eggs and exsheathed Hc infective larvae (L3) were assessed. Ot HE-SLE showed a potent ovicidal activity (LC50 = 0.213 mg/mL; LC90 = 0.71 mg/mL) and larvicidal effect (LC50 = 28.01 mg/mL; LC90 = 69.3 mg/mL). Later on, the extract was bipartitioned to obtain an ethyl acetate phase (EtOAc-Ph) and an aqueous phase (Aq-Ph). Both phases were assessed against Hc eggs at 0.25 and 1.0 mg/mL concentrations. The results with EtOAc-Ph showed 93.6% ovicidal activity, while 96.6% was recorded with Aq-Ph at 48 h post-confrontation (PC). In the case of larvicidal activity, both phases were assessed at 28 mg/mL; Aq-Ph showed >80% larvicidal activity 24 and 72 h PC, while EtOAc-Ph did not show important activity. HPLC analysis showed the presence of coumaric acid and flavonols. Flavonol compounds were the major compounds and were associated with the nematocidal activity. Additionally, the Aq-Ph that showed the highest activity was purified, and the fraction F3 showed the highest nematocidal activity.

4.
J Nematol ; 52: 1-8, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32722905

RESUMO

A survey of entomopathogenic nematodes was conducted in sugar cane crops in a total of 14 soils, and positive results were obtained for strain MC5-2014 in the municipality of Tepalcingo, Morelos, in soil with a sandy loam texture and a pH of 6.4. Species determination was performed via morphological and morphometric techniques by searching for a tubular stoma with a swollen cylindrical pharyngeal body and a metacorpus in the basal part. The range of body length (L) was 750 to 1200 µm in females and 720 to 910 µm in males, while the corresponding maximum widths (W) of the body were 30 to 60 µm and 20 to 30 µm, respectively. Males exhibited bursa with a 1 + 1 + 3 + 3 distribution of papillae, and females exhibited a vulva located at the mid-body. For molecular identification, the ITS region of ribosomal DNA was used. Virulence tests (LC50) were conducted with Galleria mellonella, and a value of 4.732 was obtained for infective juveniles (IJs). Taking taxonomic and molecular characteristics into account, the isolate was determined to be Oscheius myriophila. The isolation of this strain represents the first geographic report of O. myriophila in Mexico, and it should be noted that the cultivation of sugar cane occurs with constant application of insecticides, herbicides, fungicides, and fertilizers as well as harvesting activities such as burning of the crop for harvest. The O. myriophila isolate has the potential to be used in the future as a method of biological control in our country.A survey of entomopathogenic nematodes was conducted in sugar cane crops in a total of 14 soils, and positive results were obtained for strain MC5-2014 in the municipality of Tepalcingo, Morelos, in soil with a sandy loam texture and a pH of 6.4. Species determination was performed via morphological and morphometric techniques by searching for a tubular stoma with a swollen cylindrical pharyngeal body and a metacorpus in the basal part. The range of body length (L) was 750 to 1200 µm in females and 720 to 910 µm in males, while the corresponding maximum widths (W) of the body were 30 to 60 µm and 20 to 30 µm, respectively. Males exhibited bursa with a 1 + 1 + 3 + 3 distribution of papillae, and females exhibited a vulva located at the mid-body. For molecular identification, the ITS region of ribosomal DNA was used. Virulence tests (LC50) were conducted with Galleria mellonella, and a value of 4.732 was obtained for infective juveniles (IJs). Taking taxonomic and molecular characteristics into account, the isolate was determined to be Oscheius myriophila. The isolation of this strain represents the first geographic report of O. myriophila in Mexico, and it should be noted that the cultivation of sugar cane occurs with constant application of insecticides, herbicides, fungicides, and fertilizers as well as harvesting activities such as burning of the crop for harvest. The O. myriophila isolate has the potential to be used in the future as a method of biological control in our country.

5.
Sci Rep ; 9(1): 17586, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31772196

RESUMO

The most commonly used biopesticides to control agricultural, forest and insect vectors of human diseases are derived from the bacterium Bacillus thuringiensis, which begins to produce Cry and Cyt insecticidal proteins during the onset of the sporulation phase. Some B. thuringiensis strains also produce S-layer proteins that are toxic to certain pests. S-layer proteins are the most abundant proteins in bacteria and archaea. This proteins' key trait to design high performace processes for mass production is their continuous expression during the vegetative phase, unlike Cry and Cyt, which are restricted to the sporulation phase. In this work, a S-layer protein expressed by the GP543 strain of B. thuringiensis that is toxic to the cattle tick Rhipicephalus microplus was mass produced using the batch culture fermentation technique. In addition, the spore-protein complex showed a mortality rate of 75% with a dose of 300 µg·mL-1 on adult females of R. microplus after fourteen days. The lethal concentration 50 was 69.7 µg·mL-1. The treatment also caused a decrease of 13% in the weight of the mass of oviposited eggs with 200 µg·mL-1 of the spore-protein complex and inhibition of the hatching of eggs from 80 to 92%. Therefore, this could be a good option for controlling this parasite. The advantages of S-layer protein synthesis are focused on the production of a new generation of proteins in pest control. This is the first report on the mass production of an S-layer protein that is responsible for toxicity.


Assuntos
Bacillus thuringiensis/química , Técnicas Bacteriológicas/métodos , Agentes de Controle Biológico/isolamento & purificação , Microbiologia Industrial/métodos , Glicoproteínas de Membrana/isolamento & purificação , Rhipicephalus/efeitos dos fármacos , Animais , Anticorpos Antibacterianos/biossíntese , Bacillus thuringiensis/efeitos dos fármacos , Bacillus thuringiensis/crescimento & desenvolvimento , Bacillus thuringiensis/metabolismo , Agentes de Controle Biológico/toxicidade , Biomassa , Reatores Biológicos , Bovinos , Meios de Cultura/farmacologia , Feminino , Fermentação , Glicoproteínas de Membrana/imunologia , Glicoproteínas de Membrana/toxicidade , Oviposição/efeitos dos fármacos , Óvulo/efeitos dos fármacos , Coelhos , Esporos Bacterianos
6.
Int J Mol Sci ; 20(14)2019 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-31315176

RESUMO

In this study we cloned a chitinase gene (SmchiC), from Serratia marcescens isolated from the corpse of a Diatraea magnifactella lepidopteran, which is an important sugarcane pest. The chitinase gene SmchiC amplified from the S. marcescens genome was cloned into the transformation vector p2X35SChiC and used to transform tobacco (Nicotiana tabacum L. cv Petit Havana SR1). The resistance of these transgenic plants to the necrotrophic fungus Botrytis cinerea and to the pest Spodoptera frugiperda was evaluated: both the activity of chitinase as well as the resistance against B. cinerea and S. frugiperda was significantly higher in transgenic plants compared to the wild-type.


Assuntos
Proteínas de Bactérias/genética , Quitinases/genética , Resistência à Doença/genética , Nicotiana/genética , Serratia marcescens/genética , Transgenes , Animais , Proteínas de Bactérias/metabolismo , Botrytis/patogenicidade , Quitinases/metabolismo , Spodoptera/patogenicidade , Nicotiana/microbiologia , Nicotiana/parasitologia
7.
Biomed Res Int ; 2016: 8272407, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27294137

RESUMO

Parasitic agents, such as helminths, are the most important biotic factors affecting aquaculture, and the fluke Centrocestus formosanus is considered to be highly pathogenic in various fish species. There have been efforts to control this parasite with chemical helminthicides, but these efforts have had unsuccessful results. We evaluated the anthelmintic effect of 37 strains of Bacillus thuringiensis against C. formosanus metacercariae in vitro using two concentrations of total protein, and only six strains produced high mortality. The virulence (CL50) on matacercariae of three strains was obtained: the GP308, GP526, and ME1 strains exhibited a LC50 of 146.2 µg/mL, 289.2 µg/mL, and 1721.9 µg/mL, respectively. Additionally, these six B. thuringiensis strains were evaluated against the cercariae of C. formosanus; the LC50 obtained from the GP526 strain with solubilized protein was 83.8 µg/mL, and it could be considered as an alternative control of the metacercariae and cercariae of this parasite in the productivity systems of ornamental fishes.


Assuntos
Bacillus thuringiensis/fisiologia , Agentes de Controle Biológico , Doenças dos Peixes/parasitologia , Doenças dos Peixes/terapia , Peixes/parasitologia , Trematódeos/microbiologia , Infecções por Trematódeos/terapia , Animais , Anti-Helmínticos/uso terapêutico , Proteínas de Bactérias/química , Bioensaio , Caramujos/microbiologia , Esporos Bacterianos/fisiologia , Resultado do Tratamento , Virulência
9.
Parasit Vectors ; 8: 285, 2015 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-26003809

RESUMO

BACKGROUND: The mite Psoroptes cuniculi is a common worldwide ectoparasite and the most frequently found in rabbit farms. It causes significant economic losses on commercial rabbit breeding associated with poor leather quality, reduced conception rates, weight loss, poor growth and death. Several strategies have been proposed for the treatment of mange caused by this mite, ranging from the use of acaricides, entomopathogenic fungi, essential oils and vaccines. However, therapy and control of both human scabies and animal mange are still based mainly on the use of drugs and chemicals such as ivermectin, which involves disadvantages including genotoxic and cytotoxic effects, resistance and environmental damage. Bacillus thuringiensis is a bacterium, innocuous for human being, domestic animals and plants that produces highly biodegradable proteins, and has been used worldwide for biological control. The aim of this work was to find an alternative treatment based on biological control for scabies caused by Psoroptes cuniculi, using protein extracts from strains of Bacillus thuringiensis. METHODS: P. cuniculi mites were obtained from naturally infected New Zealand rabbits, and different doses of protein from B. thuringiensis were added to the mites. We measured mortality and obtained the median lethal concentration and median lethal times. For histological analysis, the mites were fixed in 10% formalin, processed according to the paraffin embedded tissue technique. Sections were stained with hematoxylin-eosin to observe the general histological structure. RESULTS: We report here for the first time evidence about the in vitro acaricidal effect caused by the strain GP532 of B. thuringiensis on the mite Psoroptes cuniculi, with an LC50 of 1.3 mg/ml and a LT50 of 68 h. Histological alterations caused by B. thuringiensis on this mite, included the presence of dilated intercellular spaces in the basal membrane, membrane detachment of the peritrophic matrix and morphological alterations in columnar cells of the intestine. CONCLUSIONS: Since this mite is an obligate ectoparasite that affects rabbits, goats, horses, cows and sheep, B. thuringiensis protein extracts are proposed as a potential treatment for biological control of mange in farm animals.


Assuntos
Acaricidas/farmacologia , Bacillus thuringiensis/química , Proteínas de Bactérias/farmacologia , Infestações por Ácaros/veterinária , Controle Biológico de Vetores/métodos , Psoroptidae/efeitos dos fármacos , Coelhos/parasitologia , Acaricidas/isolamento & purificação , Animais , Proteínas de Bactérias/isolamento & purificação , Feminino , Masculino , Infestações por Ácaros/tratamento farmacológico
10.
Biomed Res Int ; 2013: 174619, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23484087

RESUMO

Bacillus thuringiensis is a gram-positive soil-dwelling bacterium that is commonly used as a biological pesticide. This bacterium may also be used for biological control of helminth parasites in domestic animals. In this study, we evaluated the possible ovicidal and cestocidal effects of a total protein extract of B. thuringiensis native strains on the zoonotic cestode parasite of dogs, Dipylidium caninum (D. caninum). Dose and time response curves were determined by coincubating B. thuringiensis proteins at concentration ranging from 100 to 1000 µ g/mL along with 4000 egg capsules of D. caninum. Egg viability was evaluated using the trypan blue exclusion test. The lethal concentration of toxins on eggs was 600 µ g/ml, and the best incubation time to produce this effect was 3 h. In the adult stage, the motility and the thickness of the tegument were used as indicators of damage. The motility was inhibited by 100% after 8 hours of culture compared to the control group, while the thickness of the cestode was reduced by 34%. Conclusively, proteins of the strain GP526 of B. thuringiensis directly act upon D. caninum showing ovicidal and cestocidal effects. Thus, B. thuringiensis is proposed as a potential biological control agent against this zoonosis.


Assuntos
Anticestoides/farmacologia , Bacillus thuringiensis/química , Toxinas Bacterianas/farmacologia , Cestoides/metabolismo , Animais , Anticestoides/química , Toxinas Bacterianas/química , Infecções por Cestoides/metabolismo , Infecções por Cestoides/prevenção & controle , Cães , Relação Dose-Resposta a Droga , Humanos , Locomoção/efeitos dos fármacos , Óvulo/metabolismo , Zoonoses/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA