Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Glycobiology ; 34(7)2024 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-38857376

RESUMO

Multivalency in lectins plays a pivotal role in influencing glycan cross-linking, thereby affecting lectin functionality. This multivalency can be achieved through oligomerization, the presence of tandemly repeated carbohydrate recognition domains, or a combination of both. Unlike lectins that rely on multiple factors for the oligomerization of identical monomers, tandem-repeat lectins inherently possess multivalency, independent of this complex process. The repeat domains, although not identical, display slightly distinct specificities within a predetermined geometry, enhancing specificity, affinity, avidity and even oligomerization. Despite the recognition of this structural characteristic in recently discovered lectins by numerous studies, a unified criterion to define tandem-repeat lectins is still necessary. We suggest defining them multivalent lectins with intrachain tandem repeats corresponding to carbohydrate recognition domains, independent of oligomerization. This systematic review examines the folding and phyletic diversity of tandem-repeat lectins and refers to relevant literature. Our study categorizes all lectins with tandemly repeated carbohydrate recognition domains into nine distinct folding classes associated with specific biological functions. Our findings provide a comprehensive description and analysis of tandem-repeat lectins in terms of their functions and structural features. Our exploration of phyletic and functional diversity has revealed previously undocumented tandem-repeat lectins. We propose research directions aimed at enhancing our understanding of the origins of tandem-repeat lectin and fostering the development of medical and biotechnological applications, notably in the design of artificial sugars and neolectins.


Assuntos
Lectinas , Sequências de Repetição em Tandem , Animais , Humanos , Lectinas/química , Lectinas/metabolismo
2.
World J Microbiol Biotechnol ; 39(12): 339, 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37821748

RESUMO

The capacity of Pseudomonas aeruginosa to assimilate nutrients is essential for niche colonization and contributes to its pathogenicity. Isocitrate lyase (ICL), the first enzyme of the glyoxylate cycle, redirects isocitrate from the tricarboxylic acid cycle to render glyoxylate and succinate. P. aeruginosa ICL (PaICL) is regarded as a virulence factor due to its role in carbon assimilation during infection. The AceA/ICL protein family shares the catalytic domain I, triosephosphate isomerase barrel (TIM-barrel). The carboxyl terminus of domain I is essential for Escherichia coli ICL (EcICL) of subfamily 1. PaICL, which belongs to subfamily 3, has domain II inserted at the periphery of domain I, which is believed to participate in enzyme oligomerization. In addition, PaICL has the α13-loop-α14 (extended motif), which protrudes from the enzyme core, being of unknown function. This study investigates the role of domain II, the extended motif, and the carboxyl-terminus (C-ICL) and amino-terminus (N-ICL) regions in the function of the PaICL enzyme, also as their involvement in the virulence of P. aeruginosa PAO1. Deletion of domain II and the extended motif results in enzyme inactivation and structural instability of the enzyme. The His6-tag fusion at the C-ICL protein produced a less efficient enzyme than fusion at the N-ICL, but without affecting the acetate assimilation or virulence. The PaICL homotetrameric structure of the enzyme was more stable in the N-His6-ICL than in the C-His6-ICL, suggesting that the C-terminus is critical for the ICL quaternary conformation. The ICL-mutant A39 complemented with the recombinant proteins N-His6-ICL or C-His6-ICL were more virulent than the WT PAO1 strain. The findings indicate that the domain II and the extended motif are essential for the ICL structure/function, and the C-terminus is involved in its quaternary structure conformation, confirming that in P. aeruginosa, the ICL is essential for acetate assimilation and virulence.


Assuntos
Isocitrato Liase , Pseudomonas aeruginosa , Isocitrato Liase/genética , Isocitrato Liase/química , Isocitrato Liase/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Ciclo do Ácido Cítrico , Glioxilatos/metabolismo , Acetatos/metabolismo
3.
Fish Shellfish Immunol ; 132: 108513, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36584757

RESUMO

A d-galacturonic acid-specific lectin, named AcL, was purified from the sea hare Aplysia californica by galactose-agarose affinity chromatography. AcL has a molecular mass of 27.5 kDa determined by MALDI-TOF mass spectrometry. This lectin shows a good affinity for d-galacturonic acid and a lower affinity for galactosides: raffinose, melibiose, α and ß-lactose, and d-galactose. We determined the amino acid sequence of AcL by trypsin digestion and subsequent peptide analysis by mass spectrometry, resulting in a 238 amino acid protein with a theoretical molecular mass of 26.4 kDa. The difference between the theoretical and experimental values can be attributed to post-translational modifications. Thiol-disulfide quantification discerned five disulfide bonds and three free cysteines. The structure of Acl is mainly comprised of beta sheets, determined by circular dichroism, and predicted with AlphaFold. Theoretical models depict three nearly identical tandem domains consisting of two beta sheets each. From docking analysis, we identified AcL glycan-binding sites as multiple conserved motifs in each domain. Furthermore, phylogenetic analysis based on its structure and sequence showed that AcL and its closest homologues (GalULs) form a clear monophyletic group, distinct from other glycan-binding proteins with a jelly-roll fold: lectins of types F and H. GalULs possess four conserved sequence regions that distinguish them and are either ligand-binding motifs or stabilizing network hubs. We suggest that this new family should be referred to as GalUL or D-type, following the traditional naming of lectins; D standing for depilans, the epithet for the species (Aplysia depilans) from which a lectin of this family was first isolated and described.


Assuntos
Aplysia , Lebres , Animais , Aplysia/química , Aplysia/metabolismo , Lebres/metabolismo , Galectinas/química , Filogenia , Galactose/metabolismo , Polissacarídeos/metabolismo
4.
Fish Shellfish Immunol ; 131: 1264-1274, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36400370

RESUMO

Galectins are an evolutionarily ancient family of lectins characterized by their affinity for ß-galactosides and a conserved binding site in the carbohydrate recognition domain (CRD). These lectins are involved in multiple physiological functions, including the recognition of glycans on the surface of viruses and bacteria. This feature supports their role in innate immune responses in marine mollusks. Here, we identified and characterized a galectin, from the mollusk Haliotis rufescens (named HrGal), with four CRDs that belong to the tandem-repeat type. HrGal was purified by affinity chromatography in a galactose-agarose resin and exhibited a molecular mass of 64.11 kDa determined by MALDI-TOF mass spectrometry. The identity of HrGal was verified by sequencing, confirming that it is a 555 amino acid protein with a mass of 63.86 kDa. This protein corresponds to a galectin reported in GenBank with accession number AHX26603. HrGal is stable in the presence of urea, reducing agents, and ions such as Cu2+ and Zn2+. The recombinant galectin (rHrGal) was purified from inclusion bodies in the presence of these ions. A theoretical model obtained with the AlphaFold server exhibits four non-identical CRDs, with a ß sandwich folding and the representative motifs for binding ß-galactosides. This allows us to classify HrGal within the tandem repeat galectin family. On the basis of a phylogenetic analysis, we found that the mollusk sequences form a monophyletic group of tetradomain galectins unrelated to vertebrate galectins. HrGal showed specificity for galactosides and glucosides but only the sulfated sugars heparin and ι-carrageenan inhibited its hemagglutinating activity with a minimum inhibitory concentration of 4 mM and 6.25 X 10-5% respectively. The position of the sulfate groups seemed crucial for binding, both by carrageenans and heparin.


Assuntos
Galectinas , Gastrópodes , Animais , Galectinas/química , Filogenia , Sulfatos , Galactosídeos/química , Gastrópodes/genética , Gastrópodes/metabolismo , Polissacarídeos , Moluscos/genética , Heparina
5.
Fish Shellfish Immunol ; 100: 246-255, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32151687

RESUMO

Although information about invertebrate lysozymes is scarce, these enzymes have been described as components of the innate immune system, functioning as antibacterial proteins. Here we describe the first thermodynamic and structural study of a new C-type lysozyme from a Pacific white shrimp Litopenaeus vannamei (LvL), which has shown high activity against both Gram (+) and Gram (-) bacteria including Vibrio sp. that is one of the most severe pathogens in penaeid shrimp aquaculture. Compared with hen egg-white lysozyme, its sequence harbors a seven-residue insertion from amino acid 97 to 103, and a nine-residue extension at the C-terminus only found in penaeid crustaceans, making this enzyme one of the longest lysozyme reported to date. LvL was crystallized in the presence and absence of chitotriose. The former crystallized as a monomer in space group P61 and the latter in P212121 with two monomers in the asymmetric unit. Since the enzyme crystallized at a pH where lysozyme activity is deficient, the ligand could not be observed in the P61 structure; therefore, we performed a docking simulation with chitotriose to compare with the hen egg lysozyme crystallized in the presence of the ligand. Remarkably, additional amino acids in LvL caused an increase in the length of α-helix H4 (residues 97-103) that is directly related to ligand recognition. The Ka for chitotriose (4.1 × 105 M-1), as determined by Isothermal Titration Calorimetry, was one order of magnitude higher than those for lysozymes from hen and duck eggs. Our results revealed new interactions of chitiotriose with residues in helix H4.


Assuntos
Muramidase/química , Penaeidae/enzimologia , Trissacarídeos/metabolismo , Sequência de Aminoácidos , Animais , Calorimetria , Galinhas , Patos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Imunidade Inata , Simulação de Acoplamento Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Vibrio/efeitos dos fármacos
6.
FEBS J ; 286(23): 4778-4796, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31291689

RESUMO

Plant chitinases are enzymes that have several functions, including providing protection against pathogens. Agave tequilana is an economically important plant that is poorly studied. Here, we identified a chitinase from short reads of the A. tequilana transcriptome (AtChi1). A second chitinase, differing by only six residues from the first, was isolated from total RNA of plants infected with Fusarium oxysporum (AtChi2). Both enzymes were overexpressed in Escherichia coli and analysis of their sequences indicated that they belong to the class I glycoside hydrolase family19, whose members exhibit two domains: a carbohydrate-binding module and a catalytic domain, connected by a flexible linker. Activity assays and thermal shift experiments demonstrated that the recombinant Agave enzymes are highly thermostable acidic endochitinases with Tm values of 75 °C and 71 °C. Both exhibit a molecular mass close to 32 kDa, as determined by MALDI-TOF, and experimental pIs of 3.7 and 3.9. Coupling small-angle x-ray scattering information with homology modeling and docking simulations allowed us to structurally characterize both chitinases, which notably show different interactions in the binding groove. Even when the six different amino acids are all exposed to solvent in the loops located near the linker and opposite to the binding site, they confer distinct kinetic parameters against colloidal chitin and similar affinity for (GlnNAc)6, as shown by isothermal titration calorimetry. Interestingly, binding is more enthalpy-driven for AtChi2. Whereas the physiological role of these chitinases remains unknown, we demonstrate that they exhibit important antifungal activity against chitin-rich fungi such as Aspergillus sp. DATABASE: SAXS structural data are available in the SASBDB database with accession numbers SASDDE7 and SASDDA6. ENZYMES: Chitinases (EC3.2.1.14).


Assuntos
Agave/enzimologia , Quitinases/metabolismo , Sítios de Ligação , Quitinases/química , Quitinases/fisiologia , Cumarínicos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Simulação de Dinâmica Molecular , Ligação Proteica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Temperatura , Termodinâmica
7.
FEBS J ; 284(21): 3702-3717, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28898537

RESUMO

Light chain amyloidosis is a lethal disease where vital organs are damaged by the fibrillar aggregation of monoclonal light chains. λ6a is an immunoglobulin light chain encoded by the germ-line gene segment implicated in this disease. AR is a patient-derived germ-line variant with a markedly low thermodynamic stability and prone to form fibrils in vitro in less than an hour. Here, we sought to stabilize this domain by mutating some residues back to the germ-line sequence, and the most stabilizing mutations were the single-mutant AR-F21I and the double-mutant AR-F21/IV104L, both located in the hydrophobic core. While mutation Arg25Gly in 6aJL2 destabilized the domain, mutating Gly25 back to arginine in AR did not contribute to stabilization as expected. Crystallographic structures of AR and 6a-R25G were generated to explain this discrepancy. Finally, 6a-R25G crystals revealed an octameric assembly which was emulated into 6aJL2 and AR crystals by replicating their structural parameters and suggesting a common assembly pattern. DATABASE: The atomic coordinates and structure factors have been deposited in the Protein Data Bank under the accession numbers 5IR3 and 5C9K.


Assuntos
Cadeias lambda de Imunoglobulina/química , Cristalografia por Raios X , Humanos , Cadeias lambda de Imunoglobulina/genética , Cadeias lambda de Imunoglobulina/isolamento & purificação , Modelos Moleculares , Domínios Proteicos , Estabilidade Proteica , Desdobramento de Proteína , Termodinâmica
8.
Fish Shellfish Immunol ; 66: 564-574, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28546025

RESUMO

Lectins play crucial roles for innate immune responses in invertebrates by recognizing and eliminating pathogens. In this study, a lectin from the mussel Mytilus californianus (MCL) was identified and characterized. The lectin was purified by affinity chromatography in α-lactose-agarose resin showing an experimental molecular mass of 18000 Da as determined by SDS-PAGE and MALDI-TOF mass spectrometry. It was specific for binding d-galactose and N-Acetyl-d-galactosamine that contained carbohydrate moieties that were also inhibited by melibiose and raffinose. It had the ability to agglutinate all types of human erythrocytes, as well as rabbit red blood cells. Circular dichroism analyzes have indicated that this lectin possessed an α/ß fold with a predominance of ß structures. This was consistent with the structure of the protein that was determined by the X-ray diffraction techniques. MCL was crystallized in the space group C21 and it diffracted to 1.79 Å resolution. Two monomers were found in the asymmetric unit and they formed dimers in solution. The protein has shown to be a member of the ß-trefoil family, with three sugar binding sites per monomer. In accord with fluorescence-based thermal shift assays, we observed that the MCL Tm increased about 10 °C in the presence of galactose. Furthermore, we have determined the complete amino acid sequence by cDNA sequencing. The gene had two ORF2 proteins, one resulting in a 180 residue protein with a theoretical molecular mass of 20227 Da, and another resulting in a 150 residue protein with a theoretical molecular mass of 16911 Da. The difference between the theoretical and experimental values was due to the presence of a glycosylation that was observed by the glycosylation assay. A positive microbial agglutination and a growth inhibition activity were observed against Gram-negative and Gram-positive bacteria. The M. californianus lectin is the fourth member of the recently proposed new family of lectins that have been reported to date, occurring only in mollusks belonging to the family Mytilidae. It is the first member to be glycosylated and with a strong tendency to form large oligomers.


Assuntos
Galectinas/genética , Galectinas/imunologia , Mytilus/genética , Mytilus/imunologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Escherichia coli/fisiologia , Galectinas/química , Lactobacillus plantarum/fisiologia , Mytilus/classificação , Mytilus/microbiologia , Filogenia
9.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 2): 329-41, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24531467

RESUMO

Endogenous glycosylated Hev b 2 (endo-ß-1,3-glucanase) from Hevea brasiliensis is an important latex allergen that is recognized by IgE antibodies from patients who suffer from latex allergy. The carbohydrate moieties of Hev b 2 constitute a potentially important IgE-binding epitope that could be responsible for its cross-reactivity. Here, the structure of the endogenous isoform II of Hev b 2 that exhibits three post-translational modifications, including an N-terminal pyroglutamate and two glycosylation sites at Asn27 and at Asn314, is reported from two crystal polymorphs. These modifications form a patch on the surface of the molecule that is proposed to be one of the binding sites for IgE. A structure is also proposed for the most important N-glycan present in this protein as determined by digestion with specific enzymes. To analyze the role of the carbohydrate moieties in IgE antibody binding and in human basophil activation, the glycoallergen was enzymatically deglycosylated and evaluated. Time-lapse automated video microscopy of basophils stimulated with glycosylated Hev b 2 revealed basophil activation and degranulation. Immunological studies suggested that carbohydrates on Hev b 2 represent an allergenic IgE epitope. In addition, a dimer was found in each asymmetric unit that may reflect a regulatory mechanism of this plant defence protein.


Assuntos
Antígenos de Plantas/química , Basófilos/efeitos dos fármacos , Celulase/química , Hevea/química , Imunoglobulina E/química , Proteínas de Plantas/química , Sequência de Aminoácidos , Antígenos de Plantas/imunologia , Antígenos de Plantas/isolamento & purificação , Antígenos de Plantas/farmacologia , Teste de Degranulação de Basófilos , Basófilos/citologia , Basófilos/imunologia , Sítios de Ligação , Sequência de Carboidratos , Células Cultivadas , Celulase/imunologia , Celulase/isolamento & purificação , Celulase/farmacologia , Cristalografia por Raios X , Ácido Glutâmico/metabolismo , Glicosilação , Humanos , Imunoglobulina E/imunologia , Hipersensibilidade ao Látex/imunologia , Modelos Moleculares , Dados de Sequência Molecular , Proteínas de Plantas/imunologia , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/farmacologia , Ligação Proteica , Processamento de Proteína Pós-Traducional , Estrutura Quaternária de Proteína , Imagem com Lapso de Tempo
10.
Int J Mol Sci ; 13(8): 10010-10021, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22949845

RESUMO

All the members of the triosephosphate isomerase (TIM) family possess a cystein residue (Cys126) located near the catalytically essential Glu165. The evolutionarily conserved Cys126, however, does not seem to play a significant role in the catalytic activity. On the other hand, substitution of this residue by other amino acid residues destabilizes the dimeric enzyme, especially when Cys is replaced by Ser. In trying to assess the origin of this destabilization we have determined the crystal structure of Saccharomyces cerevisiae TIM (ScTIM) at 1.86 Å resolution in the presence of PGA, which is only bound to one subunit. Comparisons of the wild type and mutant structures reveal that a change in the orientation of the Ser hydroxyl group, with respect to the Cys sulfhydryl group, leads to penetration of water molecules and apparent destabilization of residues 132-138. The latter results were confirmed by means of Molecular Dynamics, which showed that this region, in the mutated enzyme, collapses at about 70 ns.


Assuntos
Cisteína/genética , Mutação/genética , Saccharomyces cerevisiae/enzimologia , Serina/genética , Triose-Fosfato Isomerase/química , Sítios de Ligação , Catálise , Cristalografia por Raios X , Cisteína/química , Cisteína/metabolismo , Cinética , Modelos Moleculares , Simulação de Dinâmica Molecular , Conformação Proteica , Saccharomyces cerevisiae/genética , Serina/química , Serina/metabolismo , Triose-Fosfato Isomerase/genética , Triose-Fosfato Isomerase/metabolismo
11.
J Mol Biol ; 396(2): 280-92, 2010 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-19941869

RESUMO

Systemic amyloid light-chain (LC) amyloidosis is a disease process characterized by the pathological deposition of monoclonal LCs in tissue. All LC subtypes are capable of fibril formation although lambda chains, particularly those belonging to the lambda6 type, are overrepresented. Here, we report the thermodynamic and in vitro fibrillogenic properties of several mutants of the lambda6 protein 6aJL2 in which Pro7 and/or His8 was substituted by Ser or Pro. The H8P and H8S mutants were almost as stable as the wild-type protein and were poorly fibrillogenic. In contrast, the P7S mutation decreased the thermodynamic stability of 6aJL2 and greatly enhanced its capacity to form amyloid-like fibrils in vitro. The crystal structure of the P7S mutant showed that the substitution induced both local and long-distance effects, such as the rearrangement of the V(L) (variable region of the light chain)-V(L) interface. This mutant crystallized in two orthorhombic polymorphs, P2(1)2(1)2(1) and C222(1). In the latter, a monomer that was not arranged in the typical Bence-Jones dimer was observed for the first time. Crystal-packing analysis of the C222(1) lattice showed the establishment of intermolecular beta-beta interactions that involved the N-terminus and beta-strand B and that these could be relevant in the mechanism of LC fibril formation. Our results strongly suggest that Pro7 is a key residue in the conformation of the N-terminal sheet switch motif and, through long-distance interactions, is also critically involved in the contacts that stabilized the V(L) interface in lambda6 LCs.


Assuntos
Amiloide/química , Amiloide/genética , Cadeias lambda de Imunoglobulina/química , Cadeias lambda de Imunoglobulina/genética , Mutação Puntual , Multimerização Proteica/genética , Amiloide/metabolismo , Amiloidose/genética , Cristalografia por Raios X , Humanos , Região Variável de Imunoglobulina/química , Região Variável de Imunoglobulina/genética , Região Variável de Imunoglobulina/metabolismo , Cadeias lambda de Imunoglobulina/metabolismo , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação Puntual/fisiologia , Dobramento de Proteína , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína/genética , Estrutura Terciária de Proteína/genética , Temperatura , Termodinâmica
12.
FEBS Lett ; 580(10): 2483-7, 2006 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-16638575

RESUMO

Decreased immune reactivity of isoforms of major allergens has been reported. However, such claims have always been based on experiments with recombinant proteins. This work describes the molecular and physicochemical characterization of a hevein (Hev b 6.0201) natural isoform (Hev b 6.0202), which is present in rubber latex from Hevea brasiliensis. The isoallergen has a single substitution Asn14Asp, which gives rise to local differences in the surface potential, as observed from the crystal structure presented here. Besides, ELISA inhibition using serum pools of adult and pediatric patients showed reduced IgE-binding capacity ( approximately 27%) with the isoallergen. Overall, these results are relevant to delineate crucial residues involved in this dominant discontinuous epitope.


Assuntos
Substituição de Aminoácidos , Peptídeos Catiônicos Antimicrobianos/química , Imunoglobulina E/metabolismo , Lectinas de Plantas/química , Isoformas de Proteínas/química , Sequência de Aminoácidos , Peptídeos Catiônicos Antimicrobianos/metabolismo , Sítios de Ligação , Cromatografia Líquida de Alta Pressão , Eletroforese em Gel de Poliacrilamida , Modelos Moleculares , Dados de Sequência Molecular , Lectinas de Plantas/metabolismo , Isoformas de Proteínas/metabolismo , Homologia de Sequência de Aminoácidos
13.
Biocell ; Biocell;28(3): 279-285, dic. 2004. ilus, tab
Artigo em Inglês | LILACS | ID: lil-405200

RESUMO

Mitotic chromosomes of the freshwater snail Pomacea patula catemacensis (Baker 1922) were analyzed on gill tissue of specimens from the type locality (Lake Catemaco, Mexico). The diploid number of chromosomes is 2n = 26, including nine metacentric and four submetacentric pairs, therefore, the fundamental number is FN = 52. No sex chromosomes could be identified. The same chromosome number and morphology were already reported for P. flagellata, i.e., the other species of the genus living in Mexico. The basic haploid number for family Ampullariidae was reported to be n = 14 in the literaure; so, its reduction to n = 13 is probably an apomorphy of the Mexican Pomacea snails. Lanistes bolteni, from Egypt, also shows n = 13, but its karyotype is much more asymmetrical, and seems to have evolved independently from P. flagellata and P. patula catemacencis. The nominotypical subspecies, P. patula patula (Reeve 1856), is a poorly known taxon, whose original locality is unknown. A taxonomical account is presented here, and a Mexican origin postulated as the most parsimonious hypothesis.


Assuntos
Animais , Caramujos/classificação , Caramujos/genética , Brânquias/citologia , Brânquias/metabolismo , Análise Citogenética , Centrômero/genética , Cromossomos/classificação , Cromossomos/genética , Diploide , Gônadas/citologia , Gônadas/metabolismo , Cariotipagem , México , Metáfase/genética
14.
Biocell ; Biocell;28(3): 279-285, dic. 2004. ilus, tab
Artigo em Inglês | BINACIS | ID: bin-1756

RESUMO

Mitotic chromosomes of the freshwater snail Pomacea patula catemacensis (Baker 1922) were analyzed on gill tissue of specimens from the type locality (Lake Catemaco, Mexico). The diploid number of chromosomes is 2n = 26, including nine metacentric and four submetacentric pairs, therefore, the fundamental number is FN = 52. No sex chromosomes could be identified. The same chromosome number and morphology were already reported for P. flagellata, i.e., the other species of the genus living in Mexico. The basic haploid number for family Ampullariidae was reported to be n = 14 in the literaure; so, its reduction to n = 13 is probably an apomorphy of the Mexican Pomacea snails. Lanistes bolteni, from Egypt, also shows n = 13, but its karyotype is much more asymmetrical, and seems to have evolved independently from P. flagellata and P. patula catemacencis. The nominotypical subspecies, P. patula patula (Reeve 1856), is a poorly known taxon, whose original locality is unknown. A taxonomical account is presented here, and a Mexican origin postulated as the most parsimonious hypothesis. (AU)


Assuntos
Animais , Caramujos/classificação , Caramujos/genética , Centrômero/genética , Cromossomos/classificação , Cromossomos/genética , Análise Citogenética , Diploide , Brânquias/citologia , Brânquias/metabolismo , Gônadas/citologia , Gônadas/metabolismo , Cariotipagem , Metáfase/genética , México
15.
Biochem Biophys Res Commun ; 314(1): 123-30, 2004 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-14715255

RESUMO

Hevein (Hev b 6.02) is a major IgE-binding allergen in natural rubber latex and manufactured products. Both tryptophans (Trp(21) and Trp(23)) of the hevein molecule were chemically modified with BNPS-skatole (2-nitrophenylsulfenyl-3-methyl-3(')-bromoindolenine); derivatized allergen failed to significantly inhibit binding of serum IgE in ELISA assays. Similarly, skin prick tests showed that hevein-positive patients gave no response with the modified allergen. Dot blot experiments carried out with anti-hevein mono- and polyclonal antibodies confirmed the importance of Trp(21) and Trp(23) for antibody-recognition, and demonstrated the specific cross-reactivity of other molecules containing hevein-like domains. We also report the structure of Hev b 6.02 at an extended resolution (1.5A) and compare its surface properties around Trp residues with those of similar regions in other allergens. Overall our results indicate that the central part of the protein, which comprises three aromatic and other acidic and polar residues, constitutes a conformational epitope.


Assuntos
Peptídeos Catiônicos Antimicrobianos , Mapeamento de Epitopos/métodos , Epitopos/química , Imunoglobulina E/química , Hipersensibilidade ao Látex/induzido quimicamente , Modelos Moleculares , Lectinas de Plantas/química , Triptofano/química , Alérgenos/química , Alérgenos/imunologia , Alérgenos/toxicidade , Sequência de Aminoácidos , Criança , Pré-Escolar , Simulação por Computador , Cristalografia por Raios X , Humanos , Hipersensibilidade Imediata/induzido quimicamente , Hipersensibilidade Imediata/imunologia , Imunoglobulina E/imunologia , Lactente , Recém-Nascido , Hipersensibilidade ao Látex/imunologia , Dados de Sequência Molecular , Lectinas de Plantas/imunologia , Lectinas de Plantas/toxicidade , Conformação Proteica , Testes Cutâneos , Relação Estrutura-Atividade
16.
Biocell ; 28(3): 279-85, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15633451

RESUMO

Mitotic chromosomes of the freshwater snail Pomacea patula catemacensis (Baker 1922) were analyzed on gill tissue of specimens from the type locality (Lake Catemaco, Mexico). The diploid number of chromosomes is 2n = 26, including nine metacentric and four submetacentric pairs; therefore, the fundamental number is FN = 52, No sex chromosomes could be identified. The same chromosome number and morphology were already reported for P. flagellata, i.e., the other species of the genus living in Mexico. The basic haploid number for family Ampullariidae was reported to be n = 14 in the literature; so, its reduction to n = 13 is probably an apomorphy of the Mexican Pomacea snails. Lanistes bolteni, from Egypt, also shows n = 13, but its karyotype is much more asymmetrical, and seems to have evolved independently from P. flagellata and P. patula catemacensis. The nominotypical subspecies, P. patula patula (Reeve 1856), is a poorly known taxon, whose original locality is unknown. A taxonomical account is presented here, and a Mexican origin postulated as the most parsimonious hypothesis.


Assuntos
Caramujos/classificação , Caramujos/genética , Animais , Centrômero/genética , Cromossomos/classificação , Cromossomos/genética , Análise Citogenética , Diploide , Brânquias/citologia , Brânquias/metabolismo , Gônadas/citologia , Gônadas/metabolismo , Cariotipagem , Metáfase/genética , México
17.
Biocell ; Biocell;28(3): 279-85, 2004 Dec.
Artigo em Inglês | BINACIS | ID: bin-38511

RESUMO

Mitotic chromosomes of the freshwater snail Pomacea patula catemacensis (Baker 1922) were analyzed on gill tissue of specimens from the type locality (Lake Catemaco, Mexico). The diploid number of chromosomes is 2n = 26, including nine metacentric and four submetacentric pairs; therefore, the fundamental number is FN = 52, No sex chromosomes could be identified. The same chromosome number and morphology were already reported for P. flagellata, i.e., the other species of the genus living in Mexico. The basic haploid number for family Ampullariidae was reported to be n = 14 in the literature; so, its reduction to n = 13 is probably an apomorphy of the Mexican Pomacea snails. Lanistes bolteni, from Egypt, also shows n = 13, but its karyotype is much more asymmetrical, and seems to have evolved independently from P. flagellata and P. patula catemacensis. The nominotypical subspecies, P. patula patula (Reeve 1856), is a poorly known taxon, whose original locality is unknown. A taxonomical account is presented here, and a Mexican origin postulated as the most parsimonious hypothesis.

18.
J Mol Biol ; 322(4): 669-75, 2002 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-12270704

RESUMO

Triosephosphate isomerase (TIM) has been proposed as a target for drug design. TIMs from several parasites have a cysteine residue at the dimer interface, whose derivatization with thiol-specific reagents induces enzyme inactivation and aggregation. TIMs lacking this residue, such as human TIM, are less affected. TIM from Entamoeba histolytica (EhTIM) has the interface cysteine residue and presents more than ten insertions when compared with the enzyme from other pathogens. To gain further insight into the role that interface residues play in the stability and reactivity of these enzymes, we determined the high-resolution structure and characterized the effect of methylmethane thiosulfonate (MMTS) on the activity and conformational properties of EhTIM. The structure of this enzyme was determined at 1.5A resolution using molecular replacement, observing that the dimer is not symmetric. EhTIM is completely inactivated by MMTS, and dissociated into stable monomers that possess considerable secondary structure. Structural and spectroscopic analysis of EhTIM and comparison with TIMs from other pathogens reveal that conformational rearrangements of the interface after dissociation, as well as intramonomeric contacts formed by the inserted residues, may contribute to the unusual stability of the derivatized EhTIM monomer.


Assuntos
Entamoeba histolytica/enzimologia , Triose-Fosfato Isomerase/química , Animais , Modelos Moleculares , Conformação Proteica , Estrutura Terciária de Proteína , Triose-Fosfato Isomerase/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA