Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 19(4): 2826-2833, 2017 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-28067364

RESUMO

The question of the non-magnetic (NM) vs. antiferromagnetic (AF) nature of the ε phase of solid oxygen is a matter of great interest and continuing debate. In particular, it has been proposed that the ε phase is actually composed of two phases, a low-pressure AF ε1 phase and a higher pressure NM ε0 phase [Crespo et al., Proc. Natl. Acad. Sci. U. S. A., 2014, 111, 10427]. We address this problem through periodic spin-restricted and spin-polarized Kohn-Sham density functional theory calculations at pressures from 10 to 50 GPa using calibrated GGA and hybrid exchange-correlation functionals with Gaussian atomic basis sets. The two possible configurations for the antiferromagnetic (AF1 and AF2) coupling of the 0 ≤ S ≤ 1 O2 molecules in the (O2)4 unit cell were studied. Full enthalpy-driven geometry optimizations of the (O2)4 unit cells were done to study the pressure evolution of the enthalpy difference between the non-magnetic and both antiferromagnetic structures. We also address the evolution of structural parameters and the spin-per-molecule vs. pressure. We find that the spin-less solution becomes more stable than both AF structures above 50 GPa and, crucially, the spin-less solution yields lattice parameters in much better agreement with experimental data at all pressures than the AF structures. The optimized AF2 broken-symmetry structures lead to large errors of the a and b lattice parameters when compared with experiments. The results for the NM model are in much better agreement with the experimental data than those found for both AF models and are consistent with a completely non-magnetic (O2)4 unit cell for the low-pressure regime of the ε phase.

2.
J Org Chem ; 65(17): 5207-11, 2000 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-10993347

RESUMO

Reported here are some rearrangements involving the electrocyclic ring closure of dieneynes 7. Such ring closures are envisaged to possibly give strained substituted cyclic allenes 8 which could also behave as diradicals 8a. The results show that compounds such as 5 rearrange to cyclohexadienones 9a, 9b, or 11 through these kind of intermediates. Theoretical calculations performed on simple models similar to the intermediates suggest that the nature of these intermediates correspond to that of cyclic allenes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA