Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Food Sci ; 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39323288

RESUMO

The heat and momentum transfer of tomato puree through a concentric-tube heat exchanger over a range of generalized Reynolds number (0.05 < Re < 66.5) was experimentally and numerically analyzed. Thermophysical and rheological properties of tomato puree (12°Brix) were measured from 20 to 60°C. The velocity, pressure, and temperature were calculated using the computational fluid dynamics (CFD) software FLUENTTM with temperature-dependent transport properties. The thermal operation of the concentric-tube exchanger was satisfactorily predicted using CFD, indicating accurate measurement of tomato puree properties with temperature variations. A concordance was found between the calculated Fanning friction factor and generalized Reynolds with the experimental correlation. A modified Sieder-Tate correlation was established, which allows properly expressing the Nusselt number as a function of the Peclet number. Simple correlations for the mechanical work and the heat transfer rate as a function of the volumetric flow rate were derived. The thermal efficiency was high at low puree flow rates but decreased with higher rates. However, at high flow rates, ceased its decline, instead showing a slight improvement. The analysis confirmed higher heat transfer rates in the concentric-tube heat exchanger compared to a plain tube at low puree flow rates. The results offer valuable insights for assessing diverse operational conditions in dairy, beverage, sauce, and concentrated food industries. Additionally, they also enhance the analysis and design of concentric-tube heat exchangers. PRACTICAL APPLICATION: The knowledge of the rheological and hydrodynamical behavior of fluids in concentric-tube heat exchangers allows to explore a set of different operating conditions to improve the yield and effectiveness on the system heating/cooling design.

2.
World J Microbiol Biotechnol ; 32(11): 182, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27646209

RESUMO

This study determined the specific uptake rate of glucose and corn oil substrates used as carbon sources in batch cultures of Gibberella fujikuroi. We tested three biological models of growth rate: Monod, logistic and lag-exponential. With respect to the substrate consumption rate, we tested two models: constant cell yield (CCY) and law of mass action (LMA). The experimental data obtained from the culture with glucose as substrate correlated satisfactorily with the logistic/LMA model, indicating that the cell yield was variable. In the case of corn oil as carbon source, considering total residual lipids as substrate in the culture broth, the model with the best correlation was the lag-exp/CCY model. The quantification by GC of the three main fatty acids (linoleic, oleic and palmitic) in the culture medium showed a cumulative behavior, with a maximum concentration of each acid at 36 h. We established a more explicit mechanism of the consumption of corn oil, consisting of two stages: generation of fatty acids by hydrolysis and consumption by cellular uptake. The kinetic of hydrolysable lipids was of first order. We found that the hydrolysis rate of corn oil is not a limiting factor for the uptake of fatty acids by the microorganism. We also established, based on the analysis of the identical mathematical structure of consumption kinetics, that the uptake of fatty acids is faster than the uptake of glucose.


Assuntos
Técnicas de Cultura Celular por Lotes/métodos , Óleo de Milho/metabolismo , Gibberella/crescimento & desenvolvimento , Glucose/metabolismo , Biomassa , Carbono/metabolismo , Meios de Cultura , Cinética , Lipídeos/química , Modelos Logísticos
3.
J Food Sci ; 80(12): E2774-81, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26502365

RESUMO

The objective of this work was to simulate heat transfer during blanching (90 °C) and hydrocooling (5 °C) of broccoli florets (Brassica oleracea L. Italica) and to evaluate the impact of these processes on the physicochemical and nutrimental quality properties. Thermophysical properties (thermal conductivity [line heat source], specific heat capacity [differential scanning calorimetry], and bulk density [volume displacement]) of stem and inflorescence were measured as a function of temperature (5, 10, 20, 40, 60, and 80 °C). The activation energy and the frequency factor (Arrhenius model) of these thermophysical properties were calculated. A 3-dimensional finite element model was developed to predict the temperature history at different points inside the product. Comparison of the theoretical and experimental temperature histories was carried out. Quality parameters (firmness, total color difference, and vitamin C content) and peroxidase activity were measured. The satisfactory validation of the finite element model allows the prediction of temperature histories and profiles under different process conditions, which could lead to an eventual optimization aimed to minimize the nutritional and sensorial losses in broccoli florets.


Assuntos
Ácido Ascórbico/análise , Brassica/química , Cor , Culinária , Dureza , Valor Nutritivo , Temperatura , Temperatura Baixa , Temperatura Alta , Humanos , Inflorescência , Peroxidase/metabolismo , Caules de Planta , Verduras/química , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA