Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Diabetes ; 72(9): 1214-1227, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37347736

RESUMO

Metformin is used by women during pregnancy to manage diabetes and crosses the placenta, yet its effects on the fetus are unclear. We show that the liver is a site of metformin action in fetal sheep and macaques, given relatively abundant OCT1 transporter expression and hepatic uptake following metformin infusion into fetal sheep. To determine the effects of metformin action, we performed studies in primary hepatocytes from fetal sheep, fetal macaques, and juvenile macaques. Metformin increases AMP-activated protein kinase (AMPK) signaling, decreases mammalian target of rapamycin (mTOR) signaling, and decreases glucose production in fetal and juvenile hepatocytes. Metformin also decreases oxygen consumption in fetal hepatocytes. Unique to fetal hepatocytes, metformin activates stress pathways (e.g., increased PGC1A gene expression, NRF-2 protein abundance, and phosphorylation of eIF2α and CREB proteins) alongside perturbations in hepatokine expression (e.g., increased growth/differentiation factor 15 [GDF15] and fibroblast growth factor 21 [FGF21] expression and decreased insulin-like growth factor 2 [IGF2] expression). Similarly, in liver tissue from sheep fetuses infused with metformin in vivo, AMPK phosphorylation, NRF-2 protein, and PGC1A expression are increased. These results demonstrate disruption of signaling and metabolism, induction of stress, and alterations in hepatokine expression in association with metformin exposure in fetal hepatocytes. ARTICLE HIGHLIGHTS: The major metformin uptake transporter OCT1 is expressed in the fetal liver, and fetal hepatic uptake of metformin is observed in vivo. Metformin activates AMPK, reduces glucose production, and decreases oxygen consumption in fetal hepatocytes, demonstrating similar effects as in juvenile hepatocytes. Unique to fetal hepatocytes, metformin activates metabolic stress pathways and alters the expression of secreted growth factors and hepatokines. Disruption of signaling and metabolism with increased stress pathways and reduced anabolic pathways by metformin in the fetal liver may underlie reduced growth in fetuses exposed to metformin.


Assuntos
Metformina , Gravidez , Feminino , Animais , Ovinos , Metformina/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Hepatócitos/metabolismo , Glucose/metabolismo , Feto/metabolismo , Mamíferos/metabolismo
2.
J Assist Reprod Genet ; 30(3): 353-9, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23423613

RESUMO

PURPOSE: The small antral follicles (SAFs) from the ovarian medulla can be a potential source of oocytes for infertility patients, but little is known about their ability to yield mature oocytes. This study evaluated the response of these SAFs to a stimulatory bolus of human corionic gonadotropin (hCG) in vitro. METHODS: Oocyte nuclear maturation and hormone production (estradiol [E2], progesterone [P4]), antimullerian hormone [AMH]) by individual intact SAFs (n = 91; >0.5 mm; n = 5 monkeys) was evaluated after 34 h of culture in the absence (control) or presence of hCG. RESULTS: Of the total cohort (n = 91), 49 % of SAFs contained degenerating oocytes. The percentage of healthy oocytes able to reinitiate meiosis to the metaphase I (MI) and MII was greater (p < 0.05) after hCG compared to controls. E2, P4 and AMH levels were higher (p < 0.05) in SAF cultures containing germinal vesicle (GV) oocytes compared to those with MII oocytes regardless of hCG exposure. SAF with MI oocytes produced more E2, but less (p < 0.05) P4 and AMH compared to SAFs containing GV oocytes (p < 0.05). Follicles ≥1 mm produced more (p < 0.05) E2, whereas follicle diameter did not correlate with P4 or AMH levels. Only P4 increased (p < 0.05) in response to hCG, regardless of follicle size or oocyte maturity. SAFs containing degenerating oocytes produced similar levels of E2, P4 and AMH compared to SAFs containing healthy oocytes. CONCLUSIONS: These data indicate, for the first time, that oocytes within primate SAFs can reinitiate meiosis in vitro in the absence of hCG, but nuclear maturation is enhanced in SAFs cultured with hCG. Oocyte nuclear maturation within SAFs in is associated with decreased E2, P4 and AMH levels. Furthermore, hormone content within the culture media does not necessarily reflect oocyte quality.


Assuntos
Técnicas de Maturação in Vitro de Oócitos , Macaca mulatta/crescimento & desenvolvimento , Oócitos/citologia , Folículo Ovariano/citologia , Animais , Hormônio Antimülleriano/metabolismo , Estradiol/metabolismo , Feminino , Fertilização in vitro , Gonadotropinas/metabolismo , Humanos , Meiose , Oócitos/crescimento & desenvolvimento , Oogênese/efeitos dos fármacos , Folículo Ovariano/crescimento & desenvolvimento , Gravidez , Progesterona/metabolismo
3.
Hum Reprod ; 27(8): 2430-7, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22593432

RESUMO

BACKGROUND: In non-primates, the epidermal growth factor (EGF) and EGF-related ligands such as amphiregulin (AREG) serve as critical intermediates between the theca/mural cells and the cumulus-oocyte-complex (COC) following the mid-cycle LH surge. Studies were designed in primates (1) to analyze AREG levels in follicular fluid (follicular fluid) obtained from pre-ovulatory follicles, as well as (2) to assess dose-dependent effects of AREG on oocytes from small antral follicles (SAFs) during culture, including meiotic and cytoplasmic maturation. METHODS: Controlled ovulation protocols were performed on rhesus monkeys (n=12) to determine AREG content within the single, naturally selected dominant follicle after an ovulatory stimulus. Using healthy COCs (n=271) obtained from SAFs during spontaneous cycles (n=27), in vitro maturation (IVM) was performed in the absence or presence of physiological concentrations of AREG (10 or 100 ng/ml) with or without gonadotrophins (FSH, 75 mIU/ml; LH, 75 mIU/ml). At the end of the culture period, oocyte meiotic maturation was evaluated and ICSI was performed (n=111), from which fertilization and early embryo development was followed in vitro. RESULTS: AREG levels in follicular fluid from pre-ovulatory follicles increased (P<0.05) following an ovulatory bolus of hCG at 12, 24 and 36 h post-treatment. At 12 h post-hCG, AREG levels in follicular fluid ranged from 4.8 to 121.4 ng/ml. Rhesus macaque COCs incubated with 10 ng/ml AREG in the presence of gonadotrophins displayed an increased percentage of oocytes that progressed to the metaphase II (MII) stage of meiosis (82 versus 56%, P<0.05) and a decreased percentage of metaphase I (MI) oocytes (2 versus 23%, P<0.05) relative to controls, respectively. The percentage of either MI or MII oocytes at the end of the culture period was not different between oocytes cultured with 100 ng/ml AREG or in media alone. Fertilization and first cleavage rates obtained by ICSI of all IVM MII oocytes were 93 and 98%, respectively, and did not vary among treatment groups. Of the MII oocytes that fertilized (n=103), 37 were randomly selected and maintained in culture to assess developmental potential. A total of 13 early blastocysts were obtained, with four embryos developing to expanded blastocysts. CONCLUSIONS: These data indicate that AREG levels increase in rhesus macaque pre-ovulatory follicles after an ovulatory stimulus, and a specific concentration of AREG (10 ng/ml) enhances rhesus macaque oocyte nuclear maturation but not cytoplasmic maturation from SAFs obtained during the natural menstrual cycle. However, owing to the small number of samples in some treatment groups, further studies are now required.


Assuntos
Glicoproteínas/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Oócitos/citologia , Anfirregulina , Animais , Blastocisto/citologia , Células Cultivadas , Citoplasma/metabolismo , Relação Dose-Resposta a Droga , Ensaio de Imunoadsorção Enzimática/métodos , Feminino , Líquido Folicular/metabolismo , Ligantes , Hormônio Luteinizante/metabolismo , Macaca mulatta , Meiose , Oogênese , Folículo Ovariano/citologia , Ovário/fisiologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA