Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Oecologia ; 188(2): 429-439, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29992416

RESUMO

Stable isotope analysis (SIA) can be a useful tool for tracking the long-distance movements of migratory taxa. However, local-scale sources of isotopic variation, such as differences in habitat use or foraging patterns, may complicate these efforts. Few studies have evaluated the implications of local-scale foraging specializations for broad-scale isotope-based tracking. Here, we use > 300 h of animal-borne video footage from green turtles (Chelonia mydas) paired with SIA of multiple tissues, as well as fine-scale Fastloc-GPS satellite tracking, to show that dietary specialization at a single foraging location (Shark Bay, Western Australia) drives a high level of among-individual δ13C variability (δ13C range = 13.2‰). Green turtles in Shark Bay were highly omnivorous and fed selectively, with individuals specializing on different mixtures of seagrasses, macroalgae and invertebrates. Furthermore, green turtle skin δ13C and δ15N dispersion within this feeding area (total isotopic niche area = 41.6) was comparable to that from a well-studied rookery at Tortuguero, Costa Rica, where isotopic dispersion (total isotopic niche area = 44.9) is known to result from large-scale (> 1500 km) differences in foraging site selection. Thus, we provide an important reminder that two different behavioral dynamics, operating at very different spatial scales, can produce similar levels of isotopic variability. We urge an added degree of caution when interpreting isotope data for migratory species with complex foraging strategies. For green turtles specifically, a greater appreciation of trophic complexity is needed to better understand functional roles, resilience to natural and anthropogenic disturbances, and to improve management strategies.


Assuntos
Dieta , Tartarugas , Animais , Isótopos de Carbono , Costa Rica , Isótopos de Nitrogênio
2.
Ecology ; 96(10): 2834-47, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26649403

RESUMO

Considerable uncertainties often surround the causes of long-term changes in population abundance. One striking example is the precipitous decline of southern sea lions (SSL; Otariaflavescens) at the Falkland Islands, from 80 555 pups in the mid 1930s to just 5506 pups in 1965. Despite an increase in SSL abundance over the past two decades, the population has not recovered, with the number of pups born in 2014 (minimum 4443 pups) less than 6% of the 1930s estimate. The order-of-magnitude decline is primarily attributed to commercial sealing in Argentina. Here, we test this established paradigm and alternative hypotheses by assessing (1) commercial sealing at the Falkland Islands, (2) winter migration of SSL from the Falkland Islands to Argentina, (3) whether the number of SSL in Argentina could have sustained the reported level of exploitation, and (4) environmental change. The most parsimonious hypothesis explaining the SSL population decline was environmental change. Specifically, analysis of 160 years of winter sea surface temperatures revealed marked changes, including a period of warming between 1930 and 1950 that was consistent with the period of SSL decline. Sea surface temperature changes likely influenced the distribution or availability of SSL prey and impacted its population dynamics. We suggest that historical harvesting may not always be the "smoking gun" as is often purported. Rather, our conclusions support the growing evidence for bottom-up forcing on the abundance of species at lower trophic levels (e.g., plankton and fish) and resulting impacts on higher trophic levels across a broad range of ecosystems.


Assuntos
Monitoramento Ambiental , Leões-Marinhos/fisiologia , Migração Animal , Animais , Argentina , Ilhas Malvinas , Feminino , Masculino , Dinâmica Populacional , Estações do Ano , Fatores de Tempo
3.
Nat Commun ; 2: 352, 2011 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-21673673

RESUMO

Locomotion is one of the major energetic costs faced by animals and various strategies have evolved to reduce its cost. Birds use interspersed periods of flapping and gliding to reduce the mechanical requirements of level flight while undergoing cyclical changes in flight altitude, known as undulating flight. Here we equipped free-ranging marine vertebrates with accelerometers and demonstrate that gait patterns resembling undulating flight occur in four marine vertebrate species comprising sharks and pinnipeds. Both sharks and pinnipeds display intermittent gliding interspersed with powered locomotion. We suggest, that the convergent use of similar gait patterns by distinct groups of animals points to universal physical and physiological principles that operate beyond taxonomic limits and shape common solutions to increase energetic efficiency. Energetically expensive large-scale migrations performed by many vertebrates provide common selection pressure for efficient locomotion, with potential for the convergence of locomotory strategies by a wide variety of species.


Assuntos
Aceleração , Adaptação Biológica/fisiologia , Evolução Biológica , Voo Animal/fisiologia , Otárias/fisiologia , Focas Verdadeiras/fisiologia , Tubarões/fisiologia , Natação/fisiologia , Animais , Argentina , Marcha/fisiologia , Seleção Genética , Especificidade da Espécie , Telemetria
4.
J Exp Biol ; 214(Pt 4): 646-56, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21270314

RESUMO

Animals respond to environmental variation by exhibiting a number of different behaviours and/or rates of activity, which result in corresponding variation in energy expenditure. Successful animals generally maximize efficiency or rate of energy gain through foraging. Quantification of all features that modulate energy expenditure can theoretically be modelled as an animal energetic niche or power envelope; with total power being represented by the vertical axis and n-dimensional horizontal axes representing extents of processes that affect energy expenditure. Such an energetic niche could be used to assess the energetic consequences of animals adopting particular behaviours under various environmental conditions. This value of this approach was tested by constructing a simple mechanistic energetics model based on data collected from recording devices deployed on 41 free-living Magellanic penguins (Spheniscus magellanicus), foraging from four different colonies in Argentina and consequently catching four different types of prey. Energy expenditure was calculated as a function of total distance swum underwater (horizontal axis 1) and maximum depth reached (horizontal axis 2). The resultant power envelope was invariant, irrespective of colony location, but penguins from the different colonies tended to use different areas of the envelope. The different colony solutions appeared to represent particular behavioural options for exploiting the available prey and demonstrate how penguins respond to environmental circumstance (prey distribution), the energetic consequences that this has for them, and how this affects the balance of energy acquisition through foraging and expenditure strategy.


Assuntos
Comportamento Apetitivo/fisiologia , Metabolismo Energético/fisiologia , Meio Ambiente , Modelos Biológicos , Spheniscidae/fisiologia , Animais , Argentina , Modelos Lineares , Especificidade da Espécie , Natação/fisiologia
5.
J Exp Biol ; 213(Pt 23): 4074-83, 2010 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-21075949

RESUMO

In the face of the physical and physiological challenges of performing breath-hold deep dives, marine vertebrates have evolved different strategies. Although behavioural strategies in marine mammals and seabirds have been investigated in detail, little is known about the deepest-diving reptile - the leatherback turtle (Dermochelys coriacea). Here, we deployed tri-axial accelerometers on female leatherbacks nesting on St Croix, US Virgin Islands, to explore their diving strategy. Our results show a consistent behavioural pattern within dives among individuals, with an initial period of active swimming at relatively steep descent angles (∼-40 deg), with a stroke frequency of 0.32 Hz, followed by a gliding phase. The depth at which the gliding phase began increased with the maximum depth of the dives. In addition, descent body angles and vertical velocities were higher during deeper dives. Leatherbacks might thus regulate their inspired air-volume according to the intended dive depth, similar to hard-shelled turtles and penguins. During the ascent, turtles actively swam with a stroke frequency of 0.30 Hz but with a low vertical velocity (∼0.40 ms(-1)) and a low pitch angle (∼+26 deg). Turtles might avoid succumbing to decompression sickness ('the bends') by ascending slowly to the surface. In addition, we suggest that the low body temperature of this marine ectotherm compared with that of endotherms might help reduce the risk of bubble formation by increasing the solubility of nitrogen in the blood. This physiological advantage, coupled with several behavioural and physical adaptations, might explain the particular ecological niche the leatherback turtle occupies among marine reptiles.


Assuntos
Comportamento Animal/fisiologia , Mergulho/fisiologia , Tartarugas/fisiologia , Animais , Fenômenos Biomecânicos/fisiologia , Feminino , Movimento/fisiologia , Ilhas Virgens Americanas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA