Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 415(18): 3799-3816, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36645457

RESUMO

Since its discovery in 2007, polydopamine nanofilms have been widely used in many areas for surface functionalization. The simple and low-cost preparation method of the nanofilms with tunable thickness can incorporate amine and oxygen-rich chemical groups in virtually any interface. The remarkable advantages of this route have been successfully used in the field of electrochemical sensors. The self-adhesive properties of polydopamine are used to attach nanomaterials onto the electrode's surface and add chemical groups that can be explored to immobilize recognizing species for the development of biosensors. Thus, the combination of 2D materials, nanoparticles, and other materials with polydopamine has been successfully demonstrated to improve the selectivity and sensitivity of electrochemical sensors. In this review, we highlight some interesting properties of polydopamine and some applications where polydopamine plays an important role in the field of electrochemical sensors.


Assuntos
Técnicas Biossensoriais , Nanoestruturas , Técnicas Eletroquímicas , Nanoestruturas/química , Polímeros/química , Indóis
2.
Biopolymers ; 112(12): e23472, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34432290

RESUMO

Since the discovery of polydopamine (PDA), there has been a lot of progress on using this substance to functionalize many different surfaces. However, little attention has been given to prepare functionalized surfaces for the preparation of flexible electrochemical paper-based devices. After fabricating the electrodes on paper substrates, we formed PDA on the surface of the working electrode using a chemical polymerization route. PDA nanofilms on carbon were characterized by contact angle (CA) experiments, X-ray photoelectron spectroscopy, scanning electron microscopy, atomic force microscopy (topography and electrical measurements) and electrochemical techniques. We observed that PDA introduces chemical functionalities (RNH2 and RC═O) that decrease the CA of the electrode. Moreover, PDA nanofilms did not block the heterogeneous electron transfer. In fact, we observed one of the highest standard heterogeneous rate constants (ks ) for electrochemical paper-based electrodes (2.5 ± 0.1) × 10-3  cm s-1 , which is an essential parameter to obtain larger currents. In addition, our results suggest that carbonyl functionalities are ascribed for the redox activity of the nanofilms. As a proof-of-concept, the electrooxidation of nicotinamide adenine dinucleotide showed remarkable features, such as, lower oxidation potential, electrocatalytic peak currents more than 30 times higher when compared to unmodified paper-based electrodes and electrocatalytic rate constant (kobs ) of (8.2 ± 0.6) × 102  L mol-1  s-1 .


Assuntos
Indóis , Polímeros , Técnicas Eletroquímicas , Eletrodos , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA