Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Sports Med (Hindawi Publ Corp) ; 2016: 3846123, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27504484

RESUMO

The purpose of this study was to compare muscle activation of the lower limb muscles when performing a maximal isometric back squat exercise over three different positions. Fifteen young, healthy, resistance-trained men performed an isometric back squat at three knee joint angles (20°, 90°, and 140°) in a randomized, counterbalanced fashion. Surface electromyography was used to measure muscle activation of the vastus lateralis (VL), vastus medialis (VM), rectus femoris (RF), biceps femoris (BF), semitendinosus (ST), and gluteus maximus (GM). In general, muscle activity was the highest at 90° for the three quadriceps muscles, yet differences in muscle activation between knee angles were muscle specific. Activity of the GM was significantly greater at 20° and 90° compared to 140°. The BF and ST displayed similar activation at all joint angles. In conclusion, knee position alters muscles activation of the quadriceps and gluteus maximus muscles. An isometric back squat at 90° generates the highest overall muscle activation, yet an isometric back squat at 140° generates the lowest overall muscle activation of the VL and GM only.

2.
J Sports Sci Med ; 13(3): 564-70, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25177183

RESUMO

The aim of this study was to investigate the acute effects of unilateral ankle plantar flexors static- stretching on surface electromyography (sEMG) and the center of pressure (COP) during a single-leg balance task in both lower limbs. Fourteen young healthy, non-athletic individuals performed unipodal quiet standing for 30s before and after (stretched limb: immediately post-stretch, 10 and 20 minutes and non-stretched limb: immediately post-stretch) a unilateral ankle plantar flexor static- stretching protocol [6 sets of 45s/15s, 70-90% point of discomfort (POD)]. Postural sway was described using the COP area, COP speed (antero-posterior and medio-lateral directions) and COP frequency (antero-posterior and medio-lateral directions). Surface EMG (EMG integral [IEMG] and Median frequency[FM]) was used to describe the muscular activity of gastrocnemius lateralis. Ankle dorsiflexion passive range of motion increased in the stretched limb before and after the static-stretching protocol (mean ± SD: 15.0° ± 6.0 and 21.5° ± 7.0 [p < 0.001]). COP area and IEMG increased in the stretch limb between pre-stretching and immediately post-stretching (p = 0.015 and p = 0.036, respectively). In conclusion, our static- stretching protocol effectively increased passive ankle ROM. The increased ROM appears to increase postural sway and muscle activity; however these finding were only a temporary or transient effect. Key PointsThe postural control can be affected by static- stretching protocol.The lateral gastrocnemius muscle action was increased after the static- stretching protocol.The static- stretching effects remain for less than 10 minutes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA