RESUMO
OBJECTIVE: Cutaneous ulcerative skin lesions in a complex of invasive Gulf of Mexico lionfish (Red Lionfish Pterois volitans, Devil Firefish P. miles, and the hybrid Red Lionfish × Devil Firefish) became epizootic beginning in mid-August 2017. Herein, we provide the first pathological descriptions of these lesions and summarize our analyses to elucidate the etiology of the disease. METHODS: We examined ulcerated and normal fish through gross pathology and histopathology, bacterial sampling, and unbiased metagenomic next-generation sequencing. We tracked prevalence of the disease, and we used biological health indicators (condition factor, splenosomatic and hepatosomatic index) to evaluate impacts to health, while considering sex and age as potential risk factors. RESULT: Typical ulcerative lesions were deep, exposing skeletal muscle, and were bordered by pale or reddened areas often with some degree of scale loss. Only incidental parasites were found in our examinations. Most fish (86%; n = 50) exhibited wound healing grossly and histologically, confirmed by the presence of granulation tissues. A primary bacterial pathogen was not evident through bacterial culture or histopathology. Metagenomic next-generation sequencing did not reveal a viral pathogen (DNA or RNA) but did provide information about the microbiome of some ulcerated specimens. Compared with clinically healthy fish, ulcerated fish had a significantly lower condition factor and a higher splenosomatic index. Disease prevalence at monitored sites through July 2021 indicated that ulcerated fish were still present but at substantially lower prevalence than observed in 2017. CONCLUSION: Although some common findings in a number of specimens suggest a potential role for opportunistic bacteria, collectively our suite of diagnostics and analyses did not reveal an intralesional infectious agent, and we must consider the possibility that there was no communicable pathogen.
Assuntos
Perciformes , Animais , Golfo do México , Perciformes/fisiologia , PeixesRESUMO
Spearfishing is currently the primary approach for removing invasive lionfish (Pterois volitans/miles) to mitigate their impacts on western Atlantic marine ecosystems, but a substantial portion of lionfish spawning biomass is beyond the depth limits of SCUBA divers. Innovative technologies may offer a means to target deepwater populations and allow for the development of a lionfish trap fishery, but the removal efficiency and potential environmental impacts of lionfish traps have not been evaluated. We tested a collapsible, non-containment trap (the 'Gittings trap') near artificial reefs in the northern Gulf of Mexico. A total of 327 lionfish and 28 native fish (four were species protected with regulations) recruited (i.e., were observed within the trap footprint at the time of retrieval) to traps during 82 trap sets, catching 144 lionfish and 29 native fish (one more than recruited, indicating detection error). Lionfish recruitment was highest for single (versus paired) traps deployed <15 m from reefs with a 1-day soak time, for which mean lionfish and native fish recruitment per trap were approximately 5 and 0.1, respectively. Lionfish from traps were an average of 19 mm or 62 grams larger than those caught spearfishing. Community impacts from Gittings traps appeared minimal given that recruitment rates were >10X higher for lionfish than native fishes and that traps did not move on the bottom during two major storm events, although further testing will be necessary to test trap movement with surface floats. Additional research should also focus on design and operational modifications to improve Gittings trap deployment success (68% successfully opened on the seabed) and reduce lionfish escapement (56% escaped from traps upon retrieval). While removal efficiency for lionfish demonstrated by traps (12-24%) was far below that of spearfishing, Gittings traps appear suitable for future development and testing on deepwater natural reefs, which constitute >90% of the region's reef habitat.
Assuntos
Conservação dos Recursos Naturais/métodos , Recuperação e Remediação Ambiental/métodos , Espécies Introduzidas/tendências , Animais , Biomassa , Recifes de Corais , Ecossistema , Peixes/crescimento & desenvolvimento , Golfo do México , Perciformes/crescimento & desenvolvimento , Densidade Demográfica , Dinâmica Populacional , Comportamento PredatórioRESUMO
Invasive Indo-Pacific lionfish Pterois volitans/miles have become well-established in many western Atlantic marine habitats and regions. However, high densities and low genetic diversity could make their populations susceptible to disease. We examined changes in northern Gulf of Mexico (nGOM) lionfish populations following the emergence of an ulcerative skin disease in August 2017, when estimated disease prevalence was as high as 40%. Ulcerated female lionfish had 9% lower relative condition compared to non-ulcerated females. Changes in lionfish size composition indicated a potential recruitment failure in early summer 2018, when the proportion of new recruits declined by >80%. Remotely operated vehicle surveys during 2016-2018 indicated lionfish population density declined in 2018 by 75% on natural reefs. The strongest declines (77-79%) in lionfish density were on high-density (>25 lionfish per 100 m2) artificial reefs, which declined to similar levels as low-density (<15 lionfish per 100 m2) artificial reefs that had prior lionfish removals. Fisheries-dependent sampling indicated lionfish commercial spearfishing landings, commercial catch per unit effort (CPUE), and lionfish tournament CPUE also declined approximately 50% in 2018. Collectively, these results provide correlative evidence for density-dependent epizootic population control, have implications for managing lionfish and impacted native species, and improve our understanding of biological invasions.