Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Front Plant Sci ; 13: 870974, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35574124

RESUMO

Phytochrome (PHY)-mediated light and temperature perception has been increasingly implicated as important regulator of fruit development, ripening, and nutritional quality. Fruit ripening is also critically regulated by chromatin remodeling via DNA demethylation, though the molecular basis connecting epigenetic modifications in fruits and environmental cues remains largely unknown. Here, to unravel whether the PHY-dependent regulation of fruit development involves epigenetic mechanisms, an integrative analysis of the methylome, transcriptome and sRNAome of tomato fruits from phyA single and phyB1B2 double mutants was performed in immature green (IG) and breaker (BK) stages. The transcriptome analysis showed that PHY-mediated light perception regulates more genes in BK than in the early stages of fruit development (IG) and that PHYB1B2 has a more substantial impact than PHYA in the fruit transcriptome, in both analyzed stages. The global profile of methylated cytosines revealed that both PHYA and PHYB1B2 affect the global methylome, but PHYB1B2 has a greater impact on ripening-associated methylation reprogramming across gene-rich genomic regions in tomato fruits. Remarkably, promoters of master ripening-associated transcription factors (TF) (RIN, NOR, CNR, and AP2a) and key carotenoid biosynthetic genes (PSY1, PDS, ZISO, and ZDS) remained highly methylated in phyB1B2 from the IG to BK stage. The positional distribution and enrichment of TF binding sites were analyzed over the promoter region of the phyB1B2 DEGs, exposing an overrepresentation of binding sites for RIN as well as the PHY-downstream effectors PIFs and HY5/HYH. Moreover, phyA and phyB1B2 mutants showed a positive correlation between the methylation level of sRNA cluster-targeted genome regions in gene bodies and mRNA levels. The experimental evidence indicates that PHYB1B2 signal transduction is mediated by a gene expression network involving chromatin organization factors (DNA methylases/demethylases, histone-modifying enzymes, and remodeling factors) and transcriptional regulators leading to altered mRNA profile of ripening-associated genes. This new level of understanding provides insights into the orchestration of epigenetic mechanisms in response to environmental cues affecting agronomical traits.

2.
Plant J ; 105(4): 907-923, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33179365

RESUMO

Tocochromanols constitute the different forms of vitamin E (VTE), essential components of the human diet, and display a high membrane protectant activity. By combining interval mapping and genome-wide association studies (GWAS), we unveiled the genetic determinants of tocochromanol accumulation in tomato (Solanum lycopersicum) fruits. To enhance the nutritional value of this highly consumed vegetable, we dissected the natural intraspecific variability of tocochromanols in tomato fruits and genetically engineered their biosynthetic pathway. These analyses allowed the identification of a total of 25 quantitative trait loci interspersed across the genome pinpointing the chorismate-tyrosine pathway as a regulatory hub controlling the supply of the aromatic head group for tocochromanol biosynthesis. To validate the link between the chorismate-tyrosine pathway and VTE, we engineered tomato plants to bypass the pathway at the arogenate branch point. Transgenic tomatoes showed moderate increments in tocopherols (up to approximately 20%) and a massive accumulation of tocotrienols (up to approximately 3400%). Gene expression analyses of these plants reveal a trade-off between VTE and natural variation in chorismate metabolism explained by transcriptional reprogramming of specific structural genes of the pathway. By restoring the accumulation of alpha-tocotrienols (α-t3) in fruits, the plants produced here are of high pharmacological and nutritional interest.


Assuntos
Ácido Corísmico/metabolismo , Solanum lycopersicum/metabolismo , Vitamina E/análise , Mapeamento Cromossômico , Frutas/química , Frutas/metabolismo , Genes de Plantas/genética , Engenharia Genética , Loci Gênicos , Variação Genética , Estudo de Associação Genômica Ampla , Solanum lycopersicum/química , Solanum lycopersicum/genética , Redes e Vias Metabólicas/genética , Plantas Geneticamente Modificadas , Polimorfismo de Nucleotídeo Único , Característica Quantitativa Herdável , Tirosina/metabolismo , Vitamina E/metabolismo
3.
rev. udca actual. divulg. cient ; 23(2): e1742, jul.-dic. 2020. tab, graf
Artigo em Espanhol | LILACS-Express | LILACS | ID: biblio-1157053

RESUMO

RESUMEN El fermento natural o starter es un insumo panadero, que se ha revalorizado, en la actualidad, por sus beneficios y por su aporte de sabor. En este estudio, se determinaron los parámetros de cultivo del starter espontáneo de Lactobacillus, a partir de harina integral, para aplicarlo en la elaboración de pan campesino, en función de sus características sensoriales y mecánicas. Se elaboraron tres starters, para lo cual, se mezcló harina integral con agua, en una proporción de 45,5 y 54,5%, respectivamente; posterior a ello, se fermentaron, espontáneamente, a 20, 24 y 28°C, hasta un pH final de 4, a partir de los cuales, se elaboraron panes campesinos. Los panes fueron evaluados sensorialmente, por un panel de expertos (07), mediante una escala lineal no estructurada de 5 puntos, en cuanto a la forma ovalada, apariencia de la costra, masticabilidad de miga, gusto ácido y apariencia de los alveolos. El pan elaborado con el fermento a 24°C fue seleccionado por los panelistas, debido a que presentó puntajes superiores (p<0,05), en los atributos de apariencia de la costra (4,24), masticabilidad de la miga (5,0), gusto ácido (4,67) y apariencia de los alveolos (4,0). El fermento empleado presentó 79 x 107 UFC g-1 de bacterias acidolácticas. Finalmente, la textura del pan campesino seleccionado fue caracterizada instrumentalmente en términos de dureza (102,09N), gomosidad (43,02N), masticabilidad (37,36N), elasticidad (0,87) y cohesividad (0,42), perfil que se puede emplear como parámetro de calidad, para pan campesino y otras variedades similares.


ABSTRACT The natural ferment or sourdough starter is a bakery input that has been revalued nowadays for its benefits and flavour improve. In this study, the incubation parameters of the spontaneous Lactobacillus starter made with wholemeal flour were determined to be applied in sourdough bread production depending on its sensory and mechanical characteristics. Three starters were made with wholemeal flour mixed with water in a proportion of 45.5 and 54.5% respectively, then were fermented spontaneously at 20, 24 and 28°C until a final pH of 4, from which sourdough breads were produced. The breads were sensory evaluated by a panel of experts (07), using a 5-point unstructured linear scale, in terms of oval shape, crust appearance, crumb chewiness, sourness and alveoli appearance. The bread made with the starter at 24°C was selected because of the higher scores (p<0.05) in the attributes of crust appearance (4.24), crumb chewiness (5.0), sourness (4.67) and alveoli appearance (4.0). The starter used exhibit 79 x 107 CFU g-1 of lactic acid bacteria. Finally, the texture of the selected sourdough bread was characterized in terms of hardness (102.09N), gumminess (43.02N), chewiness (37.36N), springiness (0.87) and cohesiveness (0.42), a profile that can be used as a quality parameter for sourdough bread and other similar varieties.

4.
Plant Physiol ; 183(3): 869-882, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32409479

RESUMO

Changes in environmental temperature influence many aspects of plant metabolism; however, the underlying regulatory mechanisms remain poorly understood. In addition to their role in light perception, phytochromes (PHYs) have been recently recognized as temperature sensors affecting plant growth. In particular, in Arabidopsis (Arabidopsis thaliana), high temperature reversibly inactivates PHYB, reducing photomorphogenesis-dependent responses. Here, we show the role of phytochrome-dependent temperature perception in modulating the accumulation of isoprenoid-derived compounds in tomato (Solanum lycopersicum) leaves and fruits. The growth of tomato plants under contrasting temperature regimes revealed that high temperatures resulted in coordinated up-regulation of chlorophyll catabolic genes, impairment of chloroplast biogenesis, and reduction of carotenoid synthesis in leaves in a PHYB1B2-dependent manner. Furthermore, by assessing a triple phyAB1B2 mutant and fruit-specific PHYA- or PHYB2-silenced plants, we demonstrated that biosynthesis of the major tomato fruit carotenoid, lycopene, is sensitive to fruit-localized PHY-dependent temperature perception. The collected data provide compelling evidence concerning the impact of PHY-mediated temperature perception on plastid metabolism in both leaves and fruit, specifically on the accumulation of isoprenoid-derived compounds.


Assuntos
Arabidopsis/genética , Arabidopsis/metabolismo , Temperatura Alta , Fitocromo/metabolismo , Plastídeos/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Terpenos/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas
5.
Arch Virol ; 163(1): 291-295, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29052058

RESUMO

A rhabdovirus infecting maize and wheat crops in Argentina was molecularly characterized. Through next-generation sequencing (NGS) of symptomatic leaf samples, the complete genome was obtained of two isolates of maize yellow striate virus (MYSV), a putative new rhabdovirus, differing by only 0.4% at the nucleotide level. The MYSV genome consists of 12,654 nucleotides for maize and wheat virus isolates, and shares 71% nucleotide sequence identity with the complete genome of barley yellow striate mosaic virus (BYSMV, NC028244). Ten open reading frames (ORFs) were predicted in the MYSV genome from the antigenomic strand and were compared with their BYSMV counterparts. The highest amino acid sequence identity of the MYSV and BYSMV proteins was 80% between the L proteins, and the lowest was 37% between the proteins 4. Phylogenetic analysis suggested that the MYSV isolates are new members of the genus Cytorhabdovirus, family Rhabdoviridae. Yellow striate, affecting maize and wheat crops in Argentina, is an emergent disease that presents a potential economic risk for these widely distributed crops.


Assuntos
Genoma Viral , Doenças das Plantas/virologia , Rhabdoviridae/genética , Triticum/virologia , Zea mays/virologia , Argentina , Filogenia
6.
Front Plant Sci ; 8: 766, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28539933

RESUMO

Plant reoviruses are able to multiply in gramineae plants and delphacid vectors encountering different defense strategies with unique features. This study aims to comparatively assess alterations of small RNA (sRNA) populations in both hosts upon virus infection. For this purpose, we characterized the sRNA profiles of wheat and planthopper vectors infected by Mal de Río Cuarto virus (MRCV, Fijivirus, Reoviridae) and quantified virus genome segments by quantitative reverse transcription PCR We provide evidence that plant and insect silencing machineries differentially recognize the viral genome, thus giving rise to distinct profiles of virus-derived small interfering RNAs (vsiRNAs). In plants, most of the virus genome segments were targeted preferentially within their upstream sequences and vsiRNAs mapped with higher density to the smaller genome segments than to the medium or larger ones. This tendency, however, was not observed in insects. In both hosts, vsiRNAs were equally derived from sense and antisense RNA strands and the differences in vsiRNAs accumulation did not correlate with mRNAs accumulation. We also established that the piwi-interacting RNA (piRNA) pathway was active in the delphacid vector but, contrary to what is observed in virus-infected mosquitoes, virus-specific piRNAs were not detected. This work contributes to the understanding of the silencing response in insect and plant hosts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA