Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Microbiol ; 56(10): 727-733, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30267316

RESUMO

The major industrial heap bioleaching processes are located in desert regions (mainly Chile and Australia) where fresh water is scarce and the use of resources with low water activity becomes an attractive alternative. However, in spite of the importance of the microbial populations involved in these processes, little is known about their response or adaptation to osmotic stress. In order to investigate the response to osmotic stress in these microorganisms, six species of acidophilic bacteria were grown at elevated osmotic strength in liquid media, and the compatible solutes synthesised were identified using ion chromatography and MALDI-TOF mass spectrometry. Trehalose was identified as one of, or the sole, compatible solute in all species and strains, apart from Acidithiobacillus thiooxidans where glucose and proline levels increased at elevated osmotic potentials. Several other potential compatible solutes were tentatively identified by MALDITOF analysis. The same compatible solutes were produced by these bacteria regardless of the salt used to produce the osmotic stress. The results correlate with data from sequenced genomes which confirm that many chemolithotrophic and heterotrophic acidophiles possess genes for trehalose synthesis. This is the first report to identify and quantify compatible solutes in acidophilic bacteria that have important roles in biomining technologies.


Assuntos
Bactérias/metabolismo , Pressão Osmótica , Trealose/metabolismo , Acidithiobacillus/metabolismo , Adaptação Fisiológica , Metabolismo dos Carboidratos , Meios de Cultura/química , Água
2.
Environ Microbiol ; 9(2): 298-307, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17222129

RESUMO

The distribution and diversity of acidophilic bacteria of a tailings impoundment at the La Andina copper mine, Chile, was examined. The tailings have low sulfide (1.7% pyrite equivalent) and carbonate (1.4% calcite equivalent) contents and are stratified into three distinct zones: a surface (0-70-80 cm) 'oxidation zone' characterized by low-pH (2.5-4), a 'neutralization zone' (70-80 to 300-400 cm) and an unaltered 'primary zone' below 400 cm. A combined cultivation-dependent and biomolecular approach (terminal restriction enzyme fragment length polymorphism and 16S rRNA clone library analysis) was used to characterize the indigenous prokaryotic communities in the mine tailings. Total cell counts showed that the microbial biomass was greatest in the top 125 cm of the tailings. The largest numbers of bacteria (10(9) g(-1) dry weight of tailings) were found at the oxidation front (the junction between the oxidation and neutralization zones), where sulfide minerals and oxygen were both present. The dominant iron-/sulfur-oxidizing bacteria identified at the oxidation front included bacteria of the genus Leptospirillum (detected by molecular methods), and Gram-positive iron-oxidizing acidophiles related to Sulfobacillus (identified both by molecular and cultivation methods). Acidithiobacillus ferrooxidans was also detected, albeit in relatively small numbers. Heterotrophic acidophiles related to Acidobacterium capsulatum were found by molecular methods, while another Acidobacterium-like bacterium and an Acidiphilium sp. were isolated from oxidation zone samples. A conceptual model was developed, based on microbiological and geochemical data derived from the tailings, to account for the biogeochemical evolution of the Piuquenes tailings impoundment.


Assuntos
Bactérias/classificação , Cobre , Resíduos Industriais , Mineração , Microbiologia do Solo , Microbiologia da Água , Bactérias/genética , Bactérias/isolamento & purificação , Chile , Filogenia , Polimorfismo de Fragmento de Restrição
3.
Biodegradation ; 17(2): 159-67, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16456614

RESUMO

A defined mixed bacterial culture was established which catalyzed dissimilatory sulfate reduction, using glycerol as electron donor, at pH 3.8-4.2. The bacterial consortium comprised a endospore-forming sulfate reducing bacterium (isolate M1) that had been isolated from acidic sediment in a geothermal area of Montserrat (West Indies) and which had 94% sequence identity (of its 16S rRNA gene) to the Gram-positive neutrophile Desulfosporosinus orientis, and a Gram-negative (non sulfate-reducing) acidophile (isolate PFBC) that shared 99% gene identity with Acidocella aromatica. Whilst M1 was an obligate anaerobe, isolate PFBC, as other Acidocella spp., only grew in pure culture in aerobic media. Analysis of microbial communities, using a combination of total bacterial counts and fluorescent in situ hybridization, confirmed that concurrent growth of both bacteria occurred during sulfidogenesis under strictly anoxic conditions in a pH-controlled fermenter. In pure culture, M1 oxidized glycerol incompletely, producing stoichiometric amounts of acetic acid. In mixed culture with PFBC, however, acetic acid was present only in small concentrations and its occurrence was transient. Since M1 did not oxidize acetic acid, it was inferred that this metabolite was catabolized by Acidocella PFBC which, unlike glycerol, was shown to support the growth of this acidophile under aerobic conditions. In fermenter cultures maintained at pH 3.8-4.2, sulfidogenesis resulted in the removal of soluble zinc (as solid phase ZnS) whilst ferrous iron remained in solution. Potential syntrophic interactions, involving hydrogen transfer between M1 and PFBC, are discussed, as is the potential of sulfidogenesis in acidic liquors for the selective recovery of heavy metals from wastewaters.


Assuntos
Acetobacteraceae/metabolismo , Bactérias/metabolismo , Sedimentos Geológicos/microbiologia , Microbiologia Industrial/métodos , Sulfetos/metabolismo , Acetobacteraceae/genética , Acetobacteraceae/crescimento & desenvolvimento , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Fermentação , Concentração de Íons de Hidrogênio , Hibridização in Situ Fluorescente , Técnicas Microbiológicas/instrumentação , Técnicas Microbiológicas/métodos , RNA Ribossômico 16S , Índias Ocidentais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA