RESUMO
The diversity of yeasts collected from different sites in Antarctica (Admiralty Bay, King George Island and Port Foster Bay and Deception Island) and their ability to produce extracellular enzymes and mycosporines were studied. Samples were collected during the austral summer season, between November 2006 and January 2007, from the rhizosphere of Deschampsia antarctica, ornithogenic (penguin guano) soil, soil, marine and lake sediments, marine water and freshwater from lakes. A total of 89 isolates belonging to the following genera were recovered: Bensingtonia, Candida, Cryptococcus, Debaryomyces, Dioszegia, Exophiala, Filobasidium, Issatchenkia (Pichia), Kodamaea, Leucosporidium, Leucosporidiella, Metschnikowia, Nadsonia, Pichia, Rhodotorula, and Sporidiobolus, and the yeast-like fungi Aureobasidium, Leuconeurospora and Microglossum. Cryptococcus victoriae was the most frequently identified species. Several species isolated in our study have been previously reported to be Antarctic psychophilic yeasts, including Cr. antarcticus, Cr. victoriae, Dioszegia hungarica and Leucosporidium scottii. The cosmopolitan yeast species A. pullulans, C. zeylanoides, D. hansenii, I. orientalis, K. ohmeri, P. guilliermondii, Rh. mucilaginosa, and S. salmonicolor were also isolated. Five possible new species were identified. Sixty percent of the yeasts had at least one detectable extracellular enzymatic activity. Cryptococcus antarcticus, D. aurantiaca, D. crocea, D. hungarica, Dioszegia sp., E. xenobiotica, Rh. glaciales, Rh. laryngis, Microglossum sp. 1 and Microglossum sp. 2 produced mycosporines. Of the yeast isolates, 41.7% produced pigments and/or mycosporines and could be considered adapted to survive in Antarctica. Most of the yeasts had extracellular enzymatic activities at 4ºC and 20ºC, indicating that they could be metabolically active in the sampled substrates.
RESUMO
One hundred and twenty-one isolates of endophytic fungi were recovered from leaves of the bioactive Brazilian plant species Ageratum myriadenia, Palicourea tetraphylla, Piptadenia adiantoides, and Trixis vauthieri. All fungal isolates were cultivated in liquid media and crude extracts were obtained with ethyl acetate. The crude extracts were tested in bioassay panels using Leishmania amazonensis, Trypanosoma cruzi, the enzyme trypanothione reductase (TryR) from Trypanosoma cruzi, and three human cancer cell lines. Thirty-three extracts (27.2%) exhibited at least one biological activity. Seventeen extracts (14%) were cytotoxic against one or more human cancer cell line with the IC50 values ranged of >0.2 to 25 µg/mL. Twenty-four extracts (19.8%) inhibited the activity of TryR, and three showed ability to inhibit the growth of T. cruzi above 60% and their IC50 values ranged among 1 to 10 µg/mL. Eleven extracts (9%) were able to inhibit the growth of L. amazonensis and showed with IC50 values ranged among 4.6 to 24.4 µg/mL. The endophytic fungi were identified as belonging to the genera Alternaria, Arthrinium, Cochliobolus, Colletotrichum, Penicillium, Fusarium, and Gibberella. An interesting result was obtained for the bioactive isolates UFMGCB 508, 537, 899 and 903, which were related to fungi associated with medicinal plants native to Asia, Australia, Africa, and Polynesia. These results indicate that bioactive plants living in Brazilian ecosystems are a potential host of endophytic fungi able to produce bioactive prototype molecules for drug development against neglected tropical diseases.
RESUMO
The potential of Trametes villosa and Pycnoporus sanguineus to decolorize reactive textile dyes used for cotton manufacturing in the State of Minas Gerais, Brazil, was evaluated. Growth and decolorization halos were determined on malt extract agar containing 0.002g L-1 of the dye. T. villosa decolorized all 28 of the tested dyes while P. sanguineus decolorized only 9. The effect of culture conditions (shaking and dye and nitrogen concentration) on the degradation of Drimaren Brilliant Blue dye was evaluated during growth of the fungi in liquid synthetic medium. Shaking favored degradation and decolorization was not repressed by nitrogen. In pure culture, T. villosa and P. sanguineus decolorized synthetic effluent consisting of a mixture of 10 dyes. Higher decolorization of the synthetic effluent was observed when a mixed culture of the two fungi was used. This study demonstrated differences between tropical basidiomycete species in terms of their ability to degrade reactive dyes, and reinforces the potential of this group of fungi for the decolorization of textile effluents.
O potencial de Trametes villosa e Pycnoporus sanguineus de descolorir corantes têxteis reativos utilizados na manufatura de algodão no estado de Minas Gerais foi avaliado. Halos de crescimento e descoloração foram determinados em agar extrato malte (MEA) com 0,002g L-1 do corante. T. villosa descoloriu os 28 corantes testados e P. sanguineus apenas 9. A influência de condições de cultivo (agitação, concentração de corante e concentração de nitrogênio) na degradação do corante azul brilhante Drimaren foi avaliada durante crescimento dos fungos em meio líquido sintético. Agitação favoreceu a degradação e não foi observada repressão da descoloração pelo nitrogênio. Em cultura pura, T. villosa e P. sanguineus descoloriram efluente sintético constituído por uma mistura de dez corantes. Maior descoloração do efluente sintético foi observada no cultivo misto destes dois fungos. Este estudo evidenciou diferenças entre espécies de basidiomicetos tropicais na capacidade em degradar corantes reativos e reforçou o potencial deste grupo de fungos para a descoloração de efluentes têxteis.
RESUMO
A mixed culture and a pure bacterial strain (BMV8) were isolated from a bioreactor for thiocyanate treatment. Both cultures removed 5 mM of thiocyanate from the medium in 36 hours. The mixed culture was able to tolerate concentrations up to 60 mM. The efficiency of thiocyanate degradation decreased when the cells were immobilized.
Uma cultura mixta e uma linhagem bacteriana pura foram isoladas de um bioreator para tratamento de tiocianato. As culturas removeram 5mM de tiocianato do meio em 36 horas. A cultura mixta foi capaz de tolerar concentrações superiores a 60mM. A eficiência da degradação de tiocianato diminuiu quando as células foram imobilizadas.