Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Anat Embryol (Berl) ; 201(2): 111-20, 2000 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-10672363

RESUMO

Previous observations disclosed that astroglia with interlaminar processes were present in the cerebral cortex of adult New and Old World monkeys, but not in the rat, and scarcely in the prosimian Microcebus murinus. The present report is a more systematic and comprehensive comparative analysis of the occurrence of such processes in the cerebral cortex of several mammalian species. Brain samples were obtained from adult individuals from the following orders: Carnivora (canine), Rodentia (rat and mouse), Marsupialia (Macropus eugenii), Artiodactyl (bovine and ovine), Scandentia (Tupaia glis), Chiroptera (Cynopteris horsfieldii and C. brachyotis), and Primate: Prosimian (Eulemur fulvus), non-human primate species (Cebus apella, Saimiri boliviensis, Callithrix, Macaca mulatta, Papio hamadryas, Macaca fascicularis, Cercopithecus campbelli and C. ascanius) and from a human autopsy. Tissues were processed for immunocytochemistry using several antibodies directed against glial fibrillary acidic protein (GFAP), with or without additional procedures aimed at the retrieval of antigens and enhancement of their immunocytochemical expression. The cerebral cortex of non-primate species had an almost exclusive layout of stellate astrocytes, with only the occasional presence of long GFAP-IR processes in the dog that barely crossed the extent of lamina I, which in this species had comparatively increased thickness. Species of Insectivora and Chiroptera showed presence of astrocytes with long processes limited to the ventral basal cortex. Interlaminar GFAP-IR processes were absent in Eulemur fulvus, at variance with their limited presence and large within- and inter-individual variability as reported previously in Microcebus murinus. In New World monkeys such processes were absent in Callithrix samples, at variance with Cebus apella and Saimirí boliviensis. Overall, the expression of GFAP-IR interlaminar processes followed a progressive pattern: bulk of non-primate species (lack of interlaminar processes)--Chiroptera and Insectivora (processes restricted to allocortex) < strepsirhini < haplorhini (platirrhini < catarrhini). This trend is suggestive of the emergence of new evolutionary traits in the organization of the cerebral cortex, namely, the emergence of GFAP-IR long, interlaminar processes in the primate brain. Interlaminar processes may participate in a spatially restricted astroglial role, as compared to the one provided by the astroglial syncytium. It is proposed that the widely accepted concept of an exclusively astroglial syncytium is probably linked with a specific laboratory animal species ("rodent-type" or, rather, "general mammalian-type" model) that misrepresents the astroglial architecture present in the cerebral cortex of most anthropoid adult primates ("primate-type" model), including man.


Assuntos
Astrócitos/ultraestrutura , Córtex Cerebral/ultraestrutura , Idoso , Animais , Artiodáctilos , Astrócitos/química , Quirópteros , Dendritos/ultraestrutura , Cães , Proteína Glial Fibrilar Ácida/análise , Haplorrinos , Humanos , Imuno-Histoquímica , Macropodidae , Papio , Roedores , Especificidade da Espécie , Tupaia
2.
Anat Embryol (Berl) ; 197(5): 369-76, 1998 May.
Artigo em Inglês | MEDLINE | ID: mdl-9623670

RESUMO

Previous observations have shown that astrocytes with interlaminar processes are present in the cerebral cortex of humans and New and Old World monkeys, but not in the rodent. The present report furthers the analysis of possible evolutionary aspects regarding the expression of such astroglial features. A comparison between young and adult Microcebus murinus, a prosimian, and Old World monkeys (Macaca mulatta and Papio hamadryas) is presented. Brain samples were processed for glial fibrillary acidic protein (GFAP), vimentin, MAP2 and SMI 311 immunocytochemistry, using different procedures. The cerebral cortex of adult Microcebus showed the presence of long astroglial processes, albeit reduced in number and length with respect to those observed in Old World monkeys. Macaca and Papio showed dense packing of such processes extending in most cortical regions to a depth of approximately 700 micrometers. Based on double immunolabelling for GFAP and MAP 2 antigens, the location and extent of these processes was shown to overlap with areas traversed by bundles and individual apical dendrites. Aged Old World specimens depicted an increased thickness of terminal portions of interlaminar processes, with increased morphological alterations. Comparisons made between the average thickness of the "brush" composed of interlaminar processes and the thickness of lamina I among the species analyzed disclosed an absence of relationship between them. This suggests that interlaminar processes do not represent cellular adaptations to the increase in thickness in superficial cortical laminae, but rather to some other evolutionary pressure. Since astroglial interlaminar processes are already present in a prosimian, although in a comparatively reduced manner, it is suggested that such processes underwent an early expression within the primate order, with increasing presence in more recent primate species.


Assuntos
Astrócitos/citologia , Córtex Cerebral/citologia , Cheirogaleidae/anatomia & histologia , Macaca mulatta/anatomia & histologia , Papio/anatomia & histologia , Animais , Astrócitos/metabolismo , Córtex Cerebral/metabolismo , Imunofluorescência , Proteína Glial Fibrilar Ácida/metabolismo , Técnicas Imunoenzimáticas , Proteínas Associadas aos Microtúbulos/metabolismo , Ratos , Especificidade da Espécie , Vimentina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA