Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Microbiome ; 8(1): 149, 2020 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-33121541

RESUMO

BACKGROUND: Recent increases in understanding the ecological and evolutionary roles of microbial communities have underscored the importance of their hosts' biology. Yet, little is known about gut microbiota dynamics during the early stages of ecological diversification and speciation. We sequenced the V4 region of the 16s rRNA gene to study the gut microbiota of Nicaraguan Midas cichlid fish (Amphilophus cf. citrinellus). Specifically, we tested the hypothesis that parallel divergence in trophic ecology in extremely young adaptive radiations from two crater lakes is associated with parallel changes of their gut microbiota. RESULTS: Bacterial communities of fish guts and lake water were highly distinct, indicating that the gut microbiota is shaped by host-specific factors. Among individuals of the same crater lake, differentiation in trophic ecology was weakly associated with gut microbiota differentiation, suggesting that diet, to some extent, affects the gut microbiota. However, differences in trophic ecology were much more pronounced across than within species whereas similar patterns were not observed for taxonomic and functional differences of the gut microbiota. Across the two crater lakes, we could not detect conclusive evidence for parallel changes of the gut microbiota associated with trophic ecology. CONCLUSIONS: A lack of clearly differentiated niches during the early stages of ecological diversification might result in non-parallel changes of gut microbial communities, as observed in our study system as well as in other recently diverged fish species. Video Abstract.


Assuntos
Evolução Biológica , Ciclídeos/classificação , Ciclídeos/microbiologia , Microbioma Gastrointestinal , Simpatria , Animais , Microbioma Gastrointestinal/genética , Especiação Genética , Lagos , Nicarágua , RNA Ribossômico 16S/genética
2.
Mol Ecol ; 26(20): 5582-5593, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28792657

RESUMO

Colonization of novel habitats is typically challenging to organisms. In the initial stage after colonization, approximation to fitness optima in the new environment can occur by selection acting on standing genetic variation, modification of developmental patterns or phenotypic plasticity. Midas cichlids have recently colonized crater Lake Apoyo from great Lake Nicaragua. The photic environment of crater Lake Apoyo is shifted towards shorter wavelengths compared to great Lake Nicaragua and Midas cichlids from both lakes differ in visual sensitivity. We investigated the contribution of ontogeny and phenotypic plasticity in shaping the visual system of Midas cichlids after colonizing this novel photic environment. To this end, we measured cone opsin expression both during development and after experimental exposure to different light treatments. Midas cichlids from both lakes undergo ontogenetic changes in cone opsin expression, but visual sensitivity is consistently shifted towards shorter wavelengths in crater lake fish, which leads to a paedomorphic retention of their visual phenotype. This shift might be mediated by lower levels of thyroid hormone in crater lake Midas cichlids (measured indirectly as dio2 and dio3 gene expression). Exposing fish to different light treatments revealed that cone opsin expression is phenotypically plastic in both species during early development, with short and long wavelength light slowing or accelerating ontogenetic changes, respectively. Notably, this plastic response was maintained into adulthood only in the derived crater lake Midas cichlids. We conclude that the rapid evolution of Midas cichlids' visual system after colonizing crater Lake Apoyo was mediated by a shift in visual sensitivity during ontogeny and was further aided by phenotypic plasticity during development.


Assuntos
Adaptação Fisiológica/genética , Ciclídeos/genética , Opsinas dos Cones/genética , Luz , Animais , Ecossistema , Proteínas de Peixes/genética , Lagos , Nicarágua , Fenótipo , Hormônios Tireóideos/fisiologia , Visão Ocular/genética
3.
Conserv Biol ; 31(1): 86-95, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27253906

RESUMO

Large-scale infrastructure projects commonly have large effects on the environment. The planned construction of the Nicaragua Canal will irreversibly alter the aquatic environment of Nicaragua in many ways. Two distinct drainage basins (San Juan and Punta Gorda) will be connected and numerous ecosystems will be altered. Considering the project's far-reaching environmental effects, too few studies on biodiversity have been performed to date. This limits provision of robust environmental impact assessments. We explored the geographic distribution of taxonomic and genetic diversity of freshwater fish species (Poecilia spp., Amatitlania siquia, Hypsophrys nematopus, Brycon guatemalensis, and Roeboides bouchellei) across the Nicaragua Canal zone. We collected population samples in affected areas (San Juan, Punta Gorda, and Escondido drainage basins), investigated species composition of 2 drainage basins and performed genetic analyses (genetic diversity, analysis of molecular variance) based on mitochondrial cytb. Freshwater fish faunas differed substantially between drainage basins (Jaccard similarity = 0.33). Most populations from distinct drainage basins were genetically differentiated. Removing the geographic barrier between these basins will promote biotic homogenization and the loss of unique genetic diversity. We found species in areas where they were not known to exist, including an undescribed, highly distinct clade of live bearing fish (Poecilia). Our results indicate that the Nicaragua Canal likely will have strong impacts on Nicaragua's freshwater biodiversity. However, knowledge about the extent of these impacts is lacking, which highlights the need for more thorough investigations before the environment is altered irreversibly.


Assuntos
Conservação dos Recursos Naturais , Espécies em Perigo de Extinção , Peixes , Animais , Biodiversidade , Nicarágua , Zona do Canal do Panamá
4.
Bioscience ; 66(8): 632-645, 2016 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29599536

RESUMO

The proposed interoceanic canal will connect the Caribbean Sea with the Pacific Ocean, traversing Lake Nicaragua, the major freshwater reservoir in Central America. If completed, the canal would be the largest infrastructure-related excavation project on Earth. In November 2015, the Nicaraguan government approved an environmental and social impact assessment (ESIA) for the canal. A group of international experts participated in a workshop organized by the Academy of Sciences of Nicaragua to review this ESIA. The group concluded that the ESIA does not meet international standards; essential information is lacking regarding the potential impacts on the lake, freshwater and marine environments, and biodiversity. The ESIA presents an inadequate assessment of natural hazards and socioeconomic disruptions. The panel recommends that work on the canal project be suspended until an appropriate ESIA is completed. The project should be resumed only if it is demonstrated to be economically feasible, environmentally acceptable, and socially beneficial.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA