Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 341(Pt 2): 128287, 2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33059272

RESUMO

Microwave heating has been considered a promising technology for continuous flow thermal processing of fluid foods due to better retention of quality. Considering the importance of açai-berry pulp and its perishability, the inactivation kinetics of peroxidase (POD) and polyphenol oxidase (PPO) were investigated under conventional and microwave heating. First-order two-component model was well fitted to the data, indicating the presence of at least two fractions with different resistances. POD was more thermally resistant (90% inactivation for 40 s at 89 °C) and could be considered as a processing target. Inactivation curves dependency on heating technology suggests specific effects of microwaves on the protein structure. Additionally, the dielectric properties of açai-berry pulp were evaluated at 915 and 2,450 MHz for temperatures up to 120 °C. Power penetration depth dropped with temperature at 915 MHz (from 29 to 11 mm), but was less affected at 2,450 MHz (between 8 and 11 mm).


Assuntos
Catecol Oxidase/metabolismo , Euterpe/metabolismo , Micro-Ondas , Peroxidase/metabolismo , Temperatura Alta , Cinética
2.
Ultrason Sonochem ; 36: 173-181, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28069198

RESUMO

Green coconut water has unique nutritional and sensorial qualities. Despite the different technologies already studied, its enzymatic stability is still challenging. This study evaluated the use of ultrasound technology (US) for inactivating/sensitizing coconut water peroxidase (POD). The effect of both US application alone and as a pre-treatment to thermal processing was evaluated. The enzyme activity during US processing was reduced 27% after 30min (286W/L, 20kHz), demonstrating its high resistance. The thermal inactivation was described by the Weibull model under non-isothermal conditions. The enzyme became sensitized to heat after US pre-treatment. Further, the use of US resulted in more uniform heat resistance. The results suggest that US is a good technology for sensitizing enzymes before thermal processing (even for an enzyme with high thermal resistance). Therefore, the use of this technology could decrease the undesirable effects of long times and/or the high temperatures of the conventional thermal processing.


Assuntos
Bebidas/análise , Cocos/química , Temperatura Alta , Peroxidases/metabolismo , Ondas Ultrassônicas , Ativação Enzimática , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA