Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(5)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36902957

RESUMO

Titanate nanotubes were synthesized and subjected to an ion exchange reaction with erbium salt aqueous solution to obtain titanate nanotubes exchanged with erbium (3+) ions. In order to evaluate the effects of the thermal treatment atmosphere on the structural and optical properties of erbium titanate nanotubes, we subjected them to heat treatment in air and argon atmospheres. For comparison, titanate nanotubes were also treated in the same conditions. A complete structural and optical characterizations of the samples was performed. The characterizations evidenced the preservation of the morphology with the presence of phases of erbium oxides decorating the surface of the nanotubes. Variations in the dimensions of the samples (diameter and interlamellar space) were promoted by the replacement of Na+ by Er3+ and the thermal treatment in different atmospheres. In addition, the optical properties were investigated by UV-Vis absorption spectroscopy and photoluminescence spectroscopy. The results revealed that the band gap of the samples depends on the variation of diameter and sodium content caused by ion exchange and thermal treatment. Furthermore, the luminescence strongly depended on vacancies, evidenced mainly by the calcined erbium titanate nanotubes in argon atmosphere. The presence of these vacancies was confirmed by the determination of Urbach energy. The results suggest the use of thermal treated erbium titanate nanotubes in argon atmosphere in optoelectronics and photonics applications, such as photoluminescent devices, displays, and lasers.

2.
J Funct Biomater ; 13(4)2022 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-36547566

RESUMO

Strategies for the production of new nanocomposites that promote bone tissue regeneration are important, particularly those that enhance the osteoinduction of hydroxyapatite in situ. Here, we studied and report the synthesis of nanohydroxyapatite and titanate nanotube (nHAp/TiNT) composites formulated at different concentrations (1, 2, 3, and 10 wt % TiNT) by means of a wet aqueous chemical reaction. The addition of TiNT affects the morphology of the nanocomposites, decreasing the average crystallite size from 54 nm (nHAp) to 34 nm (nHAp/TiNT10%), while confirming its interaction with the nanocomposite. The crystallinity index (CI) calculated by Raman spectroscopy and XRD showed that the values decreased according to the increase in TiNT concentration, which confirmed their addition to the structure of the nanocomposite. SEM images showed the presence of TiNTs in the nanocomposite. We further verified the potential cytotoxicity of murine fibroblast cell line L929, revealing that there was no remarkable cell death at any of the concentrations tested. In vivo regenerative activity was performed using oophorectomized animal (rat) models organized into seven groups containing five animals each over two experimental periods (15 and 30 days), with bone regeneration occurring in all groups tested within 30 days; however, the nHAp/TiNT10% group showed statistically greater tissue repair, compared to the untreated control group. Thus, the results of this study demonstrate that the presently formulated nHAp/TiNT nanocomposites are promising for numerous improved bone tissue regeneration applications.

3.
Materials (Basel) ; 15(18)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36143705

RESUMO

This work reports the functionalization of sodium titanate nanotubes with amine groups obtained from the reaction of titanate nanotubes with [3-(2-Aminoethylamino)propyl]trimethoxysilane, NaTiNT-2NH, and 3-[2-(2-Aminoethylamino)ethylamino]propyltrimethoxysilane, NaTiNT-3NH. It was verified that the crystalline and morphological structures of NaTiNT were preserved after the functionalization, spectroscopies showed that aminosilane interacted covalently with the surface of NaTiNT, and the incorporation of the aminosilane groups on the surface of NaTiNT can be confirmed. The adsorbent matrices NaTiNT-2NH and NaTiNT-3NH were used to remove the anionic dye from remazol blue R (RB) in aqueous medium, and the highest adsorption capacity was around 365.84 mg g-1 (NaTiNT-2NH) and 440.70 mg g-1 (NaTiNT-3NH) in the range of pH 5.0 to 10.0 and the equilibrium time was reached in 210 min (NaTiNT-2NH) and 270 min (NaTiNT-3NH). Furthermore, the Elovich model, which reports the adsorption in heterogeneous sites and with different activation energies in the chemisorption process, was the most appropriate to describe the adsorption kinetics. Thus, these adsorbent matrices can be used as an alternative potential for dye removal RB in aqueous solution.

4.
Mater Sci Eng C Mater Biol Appl ; 115: 111051, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32600685

RESUMO

Nano-heterostructures of titanate nanotubes were synthesized and they revealed a complex structure with the formation of TiO2 (anatase), CeO2, Ag2O and metallic silver nanoparticles on the outer walls and intercalation of Ce4+ and Ag+ into the interlayer spaces of the nanotubes by microwave-assisted hydrothermal process and subjected to ion exchange reactions. To the best of our knowledge, this is the first reported silver and cerium co-exchanged titanate nanotubes for bio-applications. The co-ion exchange processes preserved the original tubular structure of titanate nanotubes with significant changes of the superficial as well as interlamellar environment. This study opens up possibility of synthesizing complex, functional nano-heterostructure with the scope of modification of the final structure, especially the amount and oxidation state of the intercalated cation (Ce4+, Ce3+ and Ag+) as well as the quantity and variety of the decorating nanoparticles (CeO2, Ag2O or metallic Ag). The interplay of which, in turn, can lead to important biological properties and applications, owing to their ion-liberation capacity. The samples were tested in antibacterial activity with two different kind of bacteria (gram positive and negative), cell cytotoxicity and adhesion, and it was found that the nano-heterostructure formed shows high antibacterial activity with low cytotoxicity and high cell adhesion, which makes it a promising material for further health applications.


Assuntos
Antibacterianos/farmacologia , Cério/química , Prata/química , Titânio/química , Animais , Antibacterianos/química , Linhagem Celular , Escherichia coli , Nanopartículas Metálicas/química , Camundongos , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Nanotubos/química , Tamanho da Partícula , Staphylococcus aureus/efeitos dos fármacos , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA