Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 161(4)2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39046344

RESUMO

We utilized a blend of replica exchange and event-chain Monte Carlo techniques to generate candidate configurations, aiming for a maximal packing fraction of hard disks within a circular enclosure. Our investigation encompassed systems comprising N particles, with N ranging from 300 to 720. Through our analysis, we identified 108 novel maximal packings, with some surpassing existing configurations by over 0.001 in packing fraction. As such, Monte Carlo methods demonstrate their efficacy in tackling optimization challenges of this nature.

2.
J Phys Condens Matter ; 34(10)2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-34874295

RESUMO

The vapour-liquid coexistence collapse in the reduced temperature,Tr=T/Tc, reduced density,ρr=ρ/ρc, plane is known as a principle of corresponding states, and Noro and Frenkel have extended it for pair potentials of variable range. Here, we provide a theoretical basis supporting this extension, and show that it can also be applied to short-range pair potentials where both repulsive and attractive parts can be anisotropic. We observe that the binodals of oblate hard ellipsoids for a given aspect ratio (κ= 1/3) with varying short-range square-well interactions collapse into a single master curve in theΔB2*-ρrplane, whereΔB2*=(B2(T)-B2(Tc))/v0,B2is the second virial coefficient, andv0is the volume of the hard body. This finding is confirmed by both REMC simulation and second virial perturbation theory for varying square-well shells, mimicking uniform, equator, and pole attractions. Our simulation results reveal that the extended law of corresponding states is not related to the local structure of the fluid.

3.
Sci Rep ; 8(1): 8886, 2018 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-29891959

RESUMO

This work shows a complete phase diagram of hard squares of side length σ in slit confinement for H < 4.5, H being the wall to wall distance measured in σ units, including the maximal packing fraction limit. The phase diagram exhibits a transition between a single-row parallel 1-[Formula: see text] and a zigzag 2-[Formula: see text] structures for H c (2) = (2[Formula: see text] - 1) < H < 2, and also another one involving the 1-[Formula: see text] and 2-[Formula: see text] structures (two parallel rows) for 2 < H < H c (3) (H c (n) = n - 1 + [Formula: see text]/n is the critical wall-to-wall distance for a (n - 1)-[Formula: see text] to n-[Formula: see text] transition and where n-[Formula: see text] represents a structure formed by tilted rectangles, each one clustering n stacked squares), and a triple point for H t [Formula: see text] 2.005. In this triple point there coexists the 1-[Formula: see text], 2-[Formula: see text], and 2-[Formula: see text] structures. For regions H c (3) < H < H c (4) and H c (4) < H < H c (5), very similar pictures arise. There is a (n - 1)-[Formula: see text] to a n-[Formula: see text] strong transition for H c (n) < H < n, followed by a softer (n - 1)-[Formula: see text] to n-[Formula: see text] transition for n < H < H c (n + 1). Again, at H [Formula: see text] n there appears a triple point, involving the (n - 1)-[Formula: see text], n-[Formula: see text], and n-[Formula: see text] structures. The similarities found for n = 2, 3 and 4 lead us to propose a tentative phase diagram for H c (n) < H < H c (n + 1) (n ∈ [Formula: see text], n > 2), where structures (n - 1)-[Formula: see text], n-[Formula: see text], and n-[Formula: see text] fill the phase diagram. Simulation and Onsager theory results are qualitatively consistent.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA