Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 38(38): 11658-11665, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36112511

RESUMO

Characterization of bidimensional polymeric films at the air-water interface in the Langmuir trough, despite being a recurrent topic, usually refers to films of already formed polymeric materials, with very scarce reports on direct polymerization at the air-water interface. In the present work, we studied the photo-polymerization of stearyl methacrylate directly at the air-water interface under a nitrogen atmosphere, with the radical initiator solubilized in the aqueous phase. Two-dimensional (2D) polymerization was monitored by measuring the pressure-area isotherm at different irradiation times. The polymerization leads to a film with an isotherm different from that observed for the monomer, where the surface pressure is directly related to the irradiation time. The shape of this isotherm confirms the presence of a compressed liquid phase, where a higher order can be attained as a consequence of stronger packing forces involving polymer chains. The presence of inter-chain interactions allows rearrangements on the surface of the subphase, and even before the collapse a dense 2D ordering (with a solid phase-like behavior) can be observed. We present a new one-step, solvent-free procedure to obtain a photo-polymeric film directly at the air-water interface, which can be transferred to a solid surface by the Langmuir-Blodgett method, allowing film preparation of controlled thickness. Films were characterized by measuring properties such as thickness, roughness, and hydrophobicity and comparing them with films obtained from a conventional polymer. We report the differences between the interfacial behavior of amphiphilic molecules and nanomaterials such as films obtained by photo-polymerization, PSMA, directly on the air-water interface.

2.
Chem Phys Lipids ; 157(2): 104-12, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19071100

RESUMO

The solubilization of biological membranes by detergents has been used as a major method for the isolation and purification of membrane proteins and other constituents. Considerable interest in this field has resulted from the finding that different components can be solubilized selectively. Certain membrane constituents are incorporated into small micelles, whereas others remain in the so-called detergent-resistant membrane domains that are large enough to be separated by centrifugation. The detergent-resistant fractions contain an elevated percentage of cholesterol, and thus its interaction with specific lipids and proteins may be key for membrane organization and regulation of cellular signaling events. This report focuses on the solubilization process induced by the sucrose monoester of myristic acid, beta-D-fructofuranosyl-6-O-myristyl-alpha-D-glucopyranoside (MMS), a nonionic detergent. We studied the effect of the head group and the cholesterol content on the process. 1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and dioctadecyl-dimethyl-ammonium chloride (DODAC) vesicles were used, and the solubilization process was followed using Laurdan (6-dodecanoyl-2-dimethylaminonaphthalene) generalized polarization (GP) measurements, carried out in the cuvette and in the 2-photon microscope. Our results indicate that: (i) localization of the MMS moieties in the lipid bilayer depends on the characteristics of the lipid polar head group and influences the solubilization process. (ii) Insertion of cholesterol molecules into the lipid bilayer protects it from solubilizaton and (iii) the microscopic mechanism of solubilization by MMS implies the decrease in size of the individual liposomes.


Assuntos
Colesterol/química , Bicamadas Lipídicas/química , Ácido Mirístico/química , Fosfolipídeos/química , 2-Naftilamina/análogos & derivados , 2-Naftilamina/química , Detergentes/química , Cinética , Lauratos/química , Lipossomos/síntese química , Lipossomos/química , Fosfatidilcolinas/química , Compostos de Amônio Quaternário/química , Solubilidade , Espectrometria de Fluorescência
3.
J Chromatogr A ; 1100(1): 20-5, 2005 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-16330281

RESUMO

An improved HPLC method is reported for the determination of rosemary's principal phenolic antioxidants, rosmarinic and carnosic acids, providing a fast and simultaneous determination for both of them by using a solid phase column. The analysis was performed with fresh methanolic extractions of Rosmarinus officinalis. To quantify the amount of antioxidants in a fast and reproducible way by means of UV-vis absorption measurements, a spectrophotometric multi-wavelength calibration curve was constructed based on the antioxidant contents obtained with the recently developed HPLC method. This UV-vis methodology can be extended to the determination of other compounds and herbs if the restrictions mentioned in the text are respected.


Assuntos
Antioxidantes/análise , Cromatografia Líquida de Alta Pressão/métodos , Fenóis/análise , Plantas Comestíveis/química , Espectrofotometria Ultravioleta/métodos
4.
J Photochem Photobiol B ; 65(2-3): 165-70, 2001 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-11809375

RESUMO

Detection of O(2)(1Delta(g)) phosphorescence emission, lambda(max)=1270 nm, following laser excitation and steady state methods were employed to determine the total rate constant, k(T), for the reaction between the non-steroidal anti-inflammatory drug piroxicam (PRX) and singlet oxygen in several solvents. Values of k(T) ranged from 0.048+/-0.003 x 10(6) M(-1) s(-1) in chloroform to 71.2+/-2.2 x 10(6) M(-1) s(-1) in N,N-dimethylformamide. The chemical reaction rate constant, k(R), was determined by using thermal decomposition of 1,4-dimethylnaphthalene endoperoxide as the singlet oxygen source. In acetonitrile, the k(R) value is equal to 5.0+/-0.4 x 10(6) M(-1) s(-1), very close to the k(T) value. This result indicates that, in this solvent, the chemical reaction corresponds to the main reaction path. Dependence of total rate constant on the solvent parameters pi* and beta can be explained in terms of a reaction mechanism that involves the formation of a perepoxide intermediate. Rearrangement of the perepoxide to dioxetane followed by ring cleavage and transacylation accounts for the formation of N-methylsaccharine and N-(2-pyridyl)oxamic acid, the main reaction products. Data obtained in dioxane-water (pH 4) mixtures with neutral enolic and zwitterionic tautomers of piroxicam in equilibrium show that the zwitterionic tautomer reacts with singlet oxygen faster than the enolic tautomer.


Assuntos
Anti-Inflamatórios não Esteroides/química , Dimetilformamida/química , Piroxicam/química , Oxigênio Singlete/química , Estrutura Molecular , Solventes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA