Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Biol Sci ; 285(1877)2018 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-29669895

RESUMO

Elucidating how ecological and evolutionary mechanisms interact to produce and maintain biodiversity is a fundamental problem in evolutionary ecology. Here, we focus on how physiological evolution affects performance and species coexistence along the thermal niche axis in replicated radiations of Anolis lizards best known for resource partitioning based on morphological divergence. We find repeated divergence in thermal physiology within these radiations, and that this divergence significantly affects performance within natural thermal environments. Morphologically similar species that co-occur invariably differ in their thermal physiology, providing evidence that physiological divergence facilitates species coexistence within anole communities. Despite repeated divergence, phylogenetic comparative analyses indicate that physiological traits have evolved more slowly than key morphological traits related to the structural niche. Phylogenetic analyses also reveal that physiological divergence is correlated with divergence in broad-scale habitat climatic features commonly used to estimate thermal niche evolution, but that the latter incompletely predicts variation in the former. We provide comprehensive evidence for repeated adaptive evolution of physiological divergence within Anolis adaptive radiations, including the complementary roles of physiological and morphological divergence in promoting community-level diversity. We recommend greater integration of performance-based traits into analyses of climatic niche evolution, as they facilitate a more complete understanding of the phenotypic and ecological consequences of climatic divergence.


Assuntos
Evolução Biológica , Ecossistema , Lagartos/fisiologia , Animais , Jamaica , Filogenia , Porto Rico , Temperatura , Ilhas Virgens Americanas
2.
Am Nat ; 180(6): 815-22, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23149405

RESUMO

The predominant view is that the thermal physiology of tropical ectotherms, including lizards, is not labile over ecological timescales. We used the recent introduction (∼35 years ago) of the Puerto Rican lizard Anolis cristatellus to Miami, Florida, to test this thermal rigidity hypothesis. We measured lower (critical thermal minimum [CT(min)]) and upper (critical thermal maximum [CT(max)]) thermal tolerances and found that the introduced population tolerates significantly colder temperatures (by ∼3°C) than does the Puerto Rican source population; however, CT(max) did not differ. These results mirror the thermal regimes experienced by each population: Miami reaches colder ambient temperatures than Puerto Rico, but maximum ambient temperatures are similar. The differences in CT(min) were observed even though lizards from both sites experienced nearly identical conditions for 49 days before CT(min) measurement. Our results demonstrate that changes in thermal tolerance occurred relatively rapidly (∼35 generations), which strongly suggests that the thermal physiology of tropical lizards is more labile than previously proposed.


Assuntos
Aclimatação , Evolução Biológica , Lagartos/fisiologia , Animais , Temperatura Baixa , Florida , Espécies Introduzidas , Lagartos/genética , Porto Rico , Seleção Genética
3.
J Comp Physiol B ; 181(7): 965-72, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21516326

RESUMO

Phenotypic plasticity can contribute to the process of adaptive radiation by facilitating population persistence in novel environments. West Indian Anolis lizards provide a classic example of an adaptive radiation, in which divergence has occurred along two primary ecological axes: structural microhabitat and climate. Adaptive plasticity in limb morphology is hypothesized to have facilitated divergence along the structural niche axis in Anolis, but very little work has explored plasticity in physiological traits. Here, we experimentally ask whether Puerto Rican Anolis cristatellus from mesic and xeric habitats differ in desiccation rates, and whether these lizards exhibit an acclimation response to changes in relative humidity. We first present microclimatic data collected at lizard perch sites that demonstrate that abiotic conditions experienced by lizards differ between mesic and xeric habitat types. In Experiment 1, we measured desiccation rates of lizards from both habitats maintained under identical laboratory conditions. This experiment demonstrated that desiccation rates differ between populations; xeric lizards lose water more slowly than mesic lizards. In Experiment 2, lizards from each habitat were either maintained under the conditions of Experiment 1, or under extremely low relative humidity. Desiccation rates did not differ between lizards from the same habitat maintained under different treatments and xeric lizards maintained lower desiccation rates than mesic lizards within each treatment. Our results demonstrate that A. cristatellus does not exhibit an acclimation response to abrupt changes of hydric conditions, and suggest that tropical Anolis lizards might be unable to exhibit physiological plasticity in desiccation rates in response to varying climatic conditions.


Assuntos
Aclimatação , Ecossistema , Lagartos/fisiologia , Perda Insensível de Água , Água/metabolismo , Animais , Clima , Umidade , Porto Rico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA