Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 22634, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39349573

RESUMO

In high-altitude regions, such as the Peruvian Andes, understanding the transformation of precipitation types under climate change is critical to the sustainability of water resources and the survival of glaciers. In this study, we investigate the distribution and types of precipitation on a tropical glacier in the Peruvian Central Andes. We utilized data from an optical-laser disdrometer and compact weather station installed at 4709 m ASL, combined with future climate scenarios from the CMIP6 project, to model potential future changes in precipitation types. Our findings highlight that increasing temperatures could lead to significant reductions in solid-phase precipitation, including snow, graupel and hail, with implications for the mass balance of Andean glaciers. For instance, a 2 °C rise might result in less than 10% of precipitation as solid, in regard to the present day, transforming the hydrological processes of the region. The two future climate scenarios from the CMIP6 project, SSP2-4.5 and SSP5-8.5, offer a broad perspective on potential climate outcomes that could impact precipitation patterns in the Andes. Our study underscores the need to revisit and expand our understanding of high-altitude precipitation in the face of climate change, paving the way for improved water resource management strategies and sustainable glacier preservation efforts in these fragile ecosystems.

2.
Sensors (Basel) ; 22(9)2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35590910

RESUMO

The research presents the inter-comparison of atmospheric variables measured by 9 automatic weather stations. This set of data was compared with the measurements of other weather stations in order to standardize the values that must be adjusted when taken to different areas. The data of a set of a total of 9 GMX500, which measures conventional meteorological variables, and 10 WS100 sensors, which measures precipitation parameters. The automatic stations were set up at the Huancayo Observatory (Geophysical Institute of Peru) for a period of 5 months. The data set of GMX500 were evaluated comparing with the average of the 9 sensors and the WS100 was compared with an optical disdrometer Parsivel2. The temperature, pressure, relative humidity, wind speed, rainfall rate, and drop size distribution were evaluated. A pair of GMX500 sensors presented high data dispersion; it was found found that the errors came from a bad configuration; once this problem was solved, good agreement was archived, with low RMSE and high correlation. It was found that the WS100 sensors overestimate the precipitation with a percentage bias close to 100% and the differences increase with the greater intensity of rain. The drop size distribution retrieved by WS100 have unrealistic behavior with higher concentrations in diameters of 1 mm and 5 mm, in addition to a flattened curve.


Assuntos
Chuva , Tempo (Meteorologia) , Umidade , Peru , Temperatura , Vento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA