Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 64(4): 1904-1929, 2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33626870

RESUMO

The modulation of melatonin signaling in peripheral tissues holds promise for treating metabolic diseases like obesity, diabetes, and nonalcoholic steatohepatitis. Here, several benzimidazole derivatives have been identified as novel agonists of the melatonin receptors MT1 and MT2. The lead compounds 10b, 15a, and 19a demonstrated subnanomolar potency at MT1/MT2 receptors, high oral bioavailability in rodents, peripherally preferred exposure, and excellent selectivity in a broad panel of targets. Two-month oral administration of 10b in high-fat diet rats led to a reduction in body weight gain similar to dapagliflozin with superior results on hepatic steatosis and triglyceride levels. An early toxicological assessment indicated that 10b (also codified as ACH-000143) was devoid of hERG binding, genotoxicity, and behavioral alterations at doses up to 100 mg/kg p.o., supporting further investigation of this compound as a drug candidate.


Assuntos
Acetamidas/uso terapêutico , Fármacos Antiobesidade/uso terapêutico , Benzimidazóis/uso terapêutico , Fígado Gorduroso/tratamento farmacológico , Receptor MT1 de Melatonina/agonistas , Receptor MT2 de Melatonina/agonistas , Acetamidas/síntese química , Acetamidas/farmacocinética , Animais , Fármacos Antiobesidade/síntese química , Fármacos Antiobesidade/farmacocinética , Compostos Benzidrílicos/farmacologia , Benzimidazóis/síntese química , Benzimidazóis/farmacocinética , Dieta Hiperlipídica , Desenho de Fármacos , Fígado Gorduroso/patologia , Glucosídeos/farmacologia , Fígado/patologia , Masculino , Camundongos , Estrutura Molecular , Obesidade/tratamento farmacológico , Ratos Sprague-Dawley , Ratos Wistar , Relação Estrutura-Atividade , Triglicerídeos/metabolismo
2.
Neurobiol Stress ; 13: 100226, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32478146

RESUMO

Post-traumatic stress disorder (PTSD) is a mental health condition that is triggered by a stressful event, with symptoms including exaggerated startle response, intrusive traumatic memories and nightmares. The single prolonged stress (SPS) is a multimodal stress protocol that comprises a sequential exposure to physical restraint, forced swimming, predator scent and ether anesthesia. This procedure generates behavioral and neurobiological alterations that resemble clinical findings of PTSD, and thus it is commonly used to model the disease in rodents. Here, we applied c-fos mapping to produce a comprehensive view of stress-activated brain regions in mice exposed to SPS alone or to SPS after oral pretreatment with the serotonin-noradrenaline receptor dual modulator ACH-000029 or the α1-adrenergic blocker prazosin. The SPS protocol evoked c-fos expression in several brain regions that control the stress-anxiety response, including the central and medial amygdala, the bed nucleus of the stria terminalis, the pallidum, the paraventricular hypothalamus, the intermediodorsal, paraventricular and central medial thalamic nuclei, the periaqueductal gray, the lateral habenula and the cuneiform nucleus. These effects were partially blocked by pretreatment with prazosin but completely prevented by ACH-000029. Collectively, these findings contribute to the brain-wide characterization of neural circuits involved in PTSD-related stress responses. Furthermore, the identification of brain areas regulated by ACH-000029 and prazosin revealed regions in which SPS-induced activation may depend on the combined or isolated action of the noradrenergic and serotonergic systems. Finally, the dual regulation of serotonin and α1 receptors by ACH-000029 might represent a potential pharmacotherapy that can be applied in the peri-trauma or early post-trauma period to mitigate the development of symptoms in PTSD patients.

3.
J Org Chem ; 68(23): 8815-22, 2003 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-14604349

RESUMO

The Hantzsch 1,4-dihydropyridine ester (1) has been observed to be a useful selective reducing agent for the reduction of electron-withdrawing conjugated double bonds. The rate of this reaction was observed to be dependent upon the nature of the conjugated substituents and, consequently, the electronic nature of the unsaturated double bond. Theoretical calculations confirmed the importance of the HOMO-LUMO gap for this reaction and implicated a hydride transfer, agreeing with the experimentally observed reaction rate order. The calculations also revealed the importance of a boatlike structure of the 1,4-dihydropyridine nucleus as well as a trans arrangement of the ester groups to facilitate the hydride transfer.

4.
Proteins ; 52(4): 483-91, 2003 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-12910449

RESUMO

Human cytomegalovirus (HCMV) is a highly species-specific DNA virus infecting up to 80% of the general population. The viral genome contains the open reading frame UL80, which encodes the full-length 80 kDa HCMV serine protease and its substrate. Full-length HCMV protease is composed of an N-terminal 256-amino-acid proteolytic domain, called assemblin, a linker region, and a C-terminal structural domain, the assembly protein precursor. Biochemical studies have shown that dimerization activates assemblin because of an induced stabilization of the oxyanion hole (Arg166). Thus, we performed here molecular dynamics (MD) simulations on HCMV protease models to study the induced-fit mechanism of the enzyme upon the binding of substrates and peptidyl inhibitors, and structural and energetic factors that are responsible for the catalytic activity of the enzyme dimer. Long and stable trajectories were obtained for the models of the monomeric and dimeric states, free in solution and bound to a peptidyl-activated carbonyl inhibitor, with very good agreement between theoretical and experimental results. Our results suggest that HCMV protease is indeed a novel example of serine protease that operates by an induced-fit mechanism. Also, in agreement with mutagenesis studies, our MD simulations suggest that the dimeric form is necessary to activate the enzyme because of an induced stabilization of the oxyanion hole.


Assuntos
Citomegalovirus/enzimologia , Serina Endopeptidases/química , Arginina/química , Arginina/metabolismo , Sítios de Ligação , Catálise , Simulação por Computador , Dimerização , Histidina/química , Histidina/metabolismo , Humanos , Modelos Moleculares , Inibidores de Proteases/química , Inibidores de Proteases/metabolismo , Conformação Proteica , Serina/química , Serina/metabolismo , Serina Endopeptidases/metabolismo
5.
Protein Eng ; 16(3): 209-15, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12702801

RESUMO

To understand the mechanisms of Na(+)/Li(+) permeation at submicromolar Ca(2+) concentrations, Na(+)/Li(+) blocking at higher Ca(2+) concentrations (10(-6)-10(-4) M) and Ca(2+) permeation at millimolar Ca(2+) concentrations, we used our recently described L-type calcium channel model. For this purpose, we obtained potential of mean force (pmf) curves for the position change of one Na(+) and one Ca(2+) ion inside the channel and for the position change of a second Ca(2+) ion when the EEEE locus is coordinated to Ca(2+). The pmf curves suggest that (i) at submicromolar Ca(2+) concentrations, because of the low velocity of Ca(2+) entry in the channel, monovalent ion flux occurs; (ii) at Ca(2+) concentrations between 10(-6) and 10(-4) M, thermodynamic equilibrium between the channel and Ca(2+) is achieved; as the coordination of Ca(2+) with the locus is more favorable than the coordination of Na(+), the monovalent ion flux is blocked; and (iii) to put a second Ca(2+) ion inside the channel at an appropriate rate, the Ca(2+) concentration should reach millimolar levels. Nevertheless, the entry of a second Ca(2+) is thermodynamically unfavorable, indicating that the competition of two Ca(2+) ions for the locus leads to Ca(2+) permeation.


Assuntos
Canais de Cálcio Tipo L/química , Cálcio/metabolismo , Canais de Cálcio Tipo L/metabolismo , Lítio/metabolismo , Sódio/metabolismo , Termodinâmica
6.
J Med Chem ; 45(23): 4995-5004, 2002 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-12408710

RESUMO

Thrombin is a serine protease responsible for blood coagulation. Since thrombin inhibitors appear to be effective in the treatment and prevention of thrombotic and embolic disorders, considerable attention has been focused on the structure and interactions of this enzyme. In this work, to evaluate the relative free energies of hydration and binding to thrombin for some benzamidine derivatives, we used the finite difference thermodynamic integration (FDTI) algorithm within the Discover program of MSI. By this method, two possible orders of hydration for the candidates were obtained: p-amidinophenylpyruvate > p-(2-oxo-1-propyl)benzamidine > p-methylbenzamidine > p-ethylbenzamidine > p-(1-propyl)benzamidine > benzamidine and p-amidinophenylpyruvate > p-(2-oxo-1-propyl)benzamidine > p-methylbenzamidine > p-ethylbenzamidine > benzamidine > p-(1-propyl)benzamidine. We also obtained the following order for thrombin binding: p-(2-oxo-1-propyl)benzamidine > p-ethylbenzamidine > p-(1-propyl)benzamidine > p-methylbenzamidine > benzamidine > p-amidinophenylpyruvate.


Assuntos
Benzamidinas/química , Inibidores de Serina Proteinase/química , Trombina/química , Ligação de Hidrogênio , Modelos Moleculares , Ligação Proteica , Relação Quantitativa Estrutura-Atividade , Termodinâmica , Água/química
7.
Protein Eng ; 15(2): 109-22, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11917147

RESUMO

In this work, we propose a molecular model of the L-type calcium channel pore from the human cardiac alpha1 subunit. Four glutamic acid residues, the EEEE locus, located at highly conserved P loops (also called SS1-SS2 segments) of the alpha1 subunit, molecularly express the calcium channel selectivity. The proposed alpha-helix structure for the SS1 segment, analyzed through molecular dynamics simulations in aqueous-phase, was validated by the plotting of Ramachandran diagrams for the averaged structures and by the analysis of i and i + 4 helical hydrogen bonding between the amino acid residues. The results of the simulation of the calcium channel model with one and two Ca2+ ions at the binding site are in accordance with mutation studies which suggest that the EEEE locus in the L-type calcium channel must form a single high-affinity binding site. These results suggest that the Ca2+ permeation through the channel would be derived from competition between two ions for the only high-affinity binding site. Furthermore, the experimentally observed blocking of the Na+ flux at micromolar Ca2+ concentrations, probably due to the occupancy of the single high-affinity binding site for one Ca2+, was also reproduced by our model.


Assuntos
Canais de Cálcio Tipo L/química , Modelos Químicos , Modelos Moleculares , Sequência de Aminoácidos , Cálcio/fisiologia , Canais de Cálcio Tipo L/fisiologia , Humanos , Ativação do Canal Iônico/fisiologia , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA