Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Phycol ; 60(4): 797-805, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38944824

RESUMO

Mazzaella, a genus with no genomic resources available, has extensive distribution in the cold waters of the Pacific, where they represent ecologically and economically important species. In this study, we aimed to sequence, assemble, and annotate the complete mitochondrial and chloroplast genomes from two Mazzaella spp. and characterize the intraspecific variation among them. We report for the first time seven whole organellar genomes (mitochondria: OR915856, OR947465, OR947466, OR947467, OR947468, OR947469, OR947470; chloroplast: OR881974, OR909680, OR909681, OR909682, OR909683, OR909684, OR909685) obtained through high-throughput sequencing for six M. laminarioides sampled from three Chilean regions and one M. membranacea. Sequenced Mazzaella mitogenomes have identical gene number, gene order, and genome structure. The same results were observed for assembled plastomes. A total of 52 genes were identified in mitogenomes, and a total of 235 genes were identified in plastomes. Although the M. membranacea plastome included a full-length pbsA gene, in all M. laminarioides samples, the pbsA gene was split in three open reading frames (ORFs). Within M. laminarioides, we observed important plastome lineage-specific variations, such as the pseudogenization of the two hypothetical protein-coding genes, ycf23 and ycf45. Nonsense mutations in the ycf23 and ycf45 genes were only detected in the northern lineage. These results are consistent with phylogenetic reconstructions and divergence time estimation using concatenated coding sequences that not only support the monophyly of M. laminarioides but also underscore that the three M. laminarioides lineages are in an advanced stage of divergence. These new results open the question of the existence of still undisclosed species in M. laminarioides.


Assuntos
Genoma de Cloroplastos , Genoma Mitocondrial , Rodófitas , Rodófitas/genética , Rodófitas/classificação , Filogenia , Chile
2.
Front Genet ; 15: 1336427, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38525243

RESUMO

Historical vicariance events, linked to the existence of stable physical barriers to gene flow, generate concordant genetic breaks in co-distributed species while stochastic processes (e.g., costal uplift) could cause species-specific genetic breaks as a result of local strong demographic bottlenecks or extinction. In Chile, previous studies show that the area of the 30°S-33°S could correspond to a stable barrier to gene flow that have affected the genetic structure of various algae and marine invertebrates. Here we sequenced two organellar genes (COI and rbcL) in four taxonomically accepted co-distributed red seaweeds species characterized by a low dispersal potential: Mazzaella laminarioides, M. membranacea, Asterfilopsis disciplinalis, and Ahnfeltiopsis vermicularis. Our results revealed the existence of ten strongly differentiated linages in the taxa studied. Strong genetic breaks, concordant in both space and time (divergence estimated to have occurred some 2.9-12.4 million years ago), were observed between taxa distributed across the 33°S. Conversely, in the Central/South part of the Chilean coast, the localization of the genetic breaks/sub-structure observed varied widely (36°S, 38°S, 39°S, and 40°S). These results suggest that a major historical vicariance event has modeled the genetic structure of several Chilean marine organisms in the north of the Chilean coast during the mid-Miocene, while more recent stochastic events and genetic drift could be the driving forces of genetic divergence/structuration in the central-southern part of the coast.

3.
J Phycol ; 59(4): 712-724, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37166446

RESUMO

The coastline is a heterogeneous and highly dynamic environment influenced by abiotic and biotic variables affecting the temporal stability of genetic diversity and structure of marine organisms. The aim of this study was to determine how much the genetic structure of four species of marine Bangiales vary in time and space. Partial sequences of the cytochrome oxidase I (COI) gene obtained from two Pyropia (Py. sp. CHJ and Py. orbicularis) and two Porphyra (P. mumfordii and P. sp. FIH) species were used to compare the effect of the 40° S/41° S biogeographic break (spatial-regional scale) and the one of the Valdivia River discharges (spatial-local scale) and determine their temporal stability. Four seasonal samplings were taken during 1 year at five sites, one site located in Melinka (Magallanes province) and four sites along the coast of Valdivia (Intermediate area), on both sides of the river mouth. Results showed a strong genetic spatial structure at regional scale (ΦST > 0.4) in Py. sp. CHJ, Py. orbicularis, and P. mumfordii, congruent with the 41° S/42° S biogeographic break. A potential barrier to gene flow, related to the Valdivia River discharge, was detected only in P. mumfordii. In P. sp. FIH, spatial genetic structure was not detected at any scale. The genetic structure of all four species is stable throughout the year. The potential effect of main currents and river discharge in limiting the transport of Bangiales spores are discussed. We propose that both a restricted propagule dispersal and the formation potential for persistent banks of microscopic stages could lead to a temporally stable spatial partitioning of genetic variation in bladed Bangiales.


Assuntos
Porphyra , Rodófitas , Filogenia , Chile , Rodófitas/genética , Organismos Aquáticos , Variação Genética
4.
Mol Ecol ; 31(21): 5506-5523, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36029170

RESUMO

Gracilaria chilensis is the main cultivated seaweed in Chile. The low genetic diversity observed in the Chilean populations has been associated with the over-exploitation of natural beds and/or the founder effect that occurred during post-glacial colonization from New Zealand. How these processes have affected its evolutionary trajectory before farming and incipient domestication is poorly understood. In this study, we used 2232 single nucleotide polymorphisms (SNPs) to assess how the species' evolutionary history in New Zealand (its region of origin), the founder effect linked to transoceanic dispersion and colonization of South America, and the recent over-exploitation of natural populations have influenced the genetic architecture of G. chilensis in Chile. The contrasting patterns of genetic diversity and structure observed between the two main islands in New Zealand attest to the important effects of Quaternary glacial cycles on G. chilensis. Approximate Bayesian Computation (ABC) analyses indicated that Chatham Island and South America were colonized independently near the end of the Last Glacial Maximum and emphasized the importance of coastal and oceanic currents during that period. Furthermore, ABC analyses inferred the existence of a recent and strong genetic bottleneck in Chile, matching the period of over-exploitation of the natural beds during the 1970s, followed by rapid demographic expansion linked to active clonal propagation used in farming. Recurrent genetic bottlenecks strongly eroded the genetic diversity of G. chilensis prior to its cultivation, raising important challenges for the management of genetic resources in this incipiently domesticated species.


Assuntos
Gracilaria , Rodófitas , Alga Marinha , Filogeografia , Alga Marinha/genética , Gracilaria/genética , Domesticação , Variação Genética/genética , Teorema de Bayes , Chile , Filogenia
5.
Plants (Basel) ; 11(5)2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35270075

RESUMO

Morphologically similar but genetically distinct species have been termed cryptic and most have been assumed to be ecologically similar. However, if these species co-occur at a certain spatial scale, some niche differences at finer scales should be expected to allow for coexistence. Here, we demonstrate the existence of a disjointed distribution of cryptic bladed Bangiales along spatial (intertidal elevations) and temporal (seasons) environmental gradients. Bladed Bangiales were identified and quantified across four intertidal elevations and four seasons for one year, at five rocky intertidal sites (between 39° S and 43° S) in southern Chile. Species determination was based on partial sequences of the mitochondrial cytochrome c oxidase 1 (COI) gene amplification. To assess species gross morphology, thallus shape, color, and maximum length and width were recorded. Hundreds of organisms were classified into nine Bangiales species belonging to three genera (i.e., Fuscifolium, Porphyra, and Pyropia), including five frequent (>97% of specimens) and four infrequent species. All species, except for Pyropia saldanhae, had been previously reported along the coasts of Chile. The thallus shape and color were very variable, and a large overlap of the maximum width and length supported the cryptic status of these species. Multivariate analyses showed that the main variable affecting species composition was intertidal elevation. Species such as Py. orbicularis were more abundant in low and mid intertidal zones, while others, such as Po. mumfordii and Po. sp. FIH, were principally observed in high and spray elevations. Despite all numerically dominant species being present all year long, a slight effect of seasonal variation on species composition was also detected. These results strongly support the existence of spatial niche partitioning in cryptic Bangiales along the Chilean rocky intertidal zone.

6.
J Phycol ; 57(2): 592-605, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33249614

RESUMO

Conditional differentiation between haploids and diploids has been proposed to drive the evolutionary stability of isomorphic biphasic life cycles. The cost of producing and maintaining genetic information has been posed as a possible driver of this conditional differentiation. Under this hypothesis, haploids benefit over diploids in resource-limited environments by halving the costs of producing and maintaining DNA. Spared resources can be allocated to enhance survival, growth or fertility. Here we test in the field whether indeed haploids have higher growth rates than diploids. Individuals of the red seaweed Agarophyton chilense, were mapped and followed during 2 years with 4-month census intervals across different stands within the Valdivia River estuary, Chile. As hypothesized, haploids grew larger and faster than diploids, but this was sex-dependent. Haploid (gametophyte) females grew twice as large and 15% faster than diploids (tetrasporophytes), whereas haploid males only grew as large and as fast as the maximum obtained by diploids in summer. However, haploid males maintained their maximum sizes and growth rates constant year-round, while diploids were smaller and had lower growth rates during the winter. In conclusion, our results confirm the conditional differentiation in size and growth between haploids and diploids but also identified important differences between males and females. Besides understanding life cycle evolution, the dynamics of A. chilense frond growth reported informs algal farmers regarding production optimization and should help in determining best planting and harvesting strategies.


Assuntos
Rodófitas , Alga Marinha , Animais , Chile , Diploide , Haploidia
7.
J Phycol ; 56(6): 1575-1590, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32609871

RESUMO

Molecular studies have reported the coexistence of two species of Agarophyton in New Zealand: the newly described A.transtasmanicum with an apparently restricted distribution to some sites in the North Island, and the more widespread A.chilense. Here, we compared the distribution, genetic diversity, and structure of both Agarophyton species throughout the archipelago using sequences of the nuclear Internal Transcribed Spacer 2 (ITS2) marker. Agarophyton chilense's distribution was continuous and extensive along the North and South Islands, Stewart Island, and Chatham Island, and the genetic clusters were mostly concordant with boundaries between biogeographic regions. In contrast, specimens of A.transtasmanicum were collected in four sites broadly distributed in both the North and South Islands, with no clear spatial structure of the genetic diversity. Populations, where the species co-occurred, tended to display similar levels in genetic diversity for the two species. Demographic inferences supported a postglacial demographic expansion for two A.chilense genetic clusters, one present in the South Island and the eastern coast of the North Island, and the other present in northern South Island. A third genetic cluster located on the western coast of the North Island had a signature of long-term demographic stability. For A.transtasmanicum, the skyline plot also suggested a postglacial demographic expansion. Last, we developed a new molecular tool to quickly and easily distinguish between the two Agarophyton species, which could be used to ease future fine-scale population studies, especially in areas where the two species coexist.


Assuntos
DNA Mitocondrial , Variação Genética , Haplótipos , Ilhas , Nova Zelândia , Filogenia , Filogeografia
8.
Sci Rep ; 9(1): 14239, 2019 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-31578357

RESUMO

Earthquake/tsunamis can have profound impacts on species and their genetic patterns. It is expected that the magnitude of this impact might depend on the species and the time since the disturbance occurs, nevertheless these assumptions remain mostly unexplored. Here we studied the genetic responses of the crustacean species Emerita analoga, Excirolana hirsuticauda, and Orchestoidea tuberculata to the 27F mega-earthquake/tsunami that occurred in Chile in February 2010. mtDNA sequence analyses revealed a lower haplotype diversity for E. analoga and E. hirsuticauda in impacted areas one month after the 27F, and the opposite for O. tuberculata. Three years after the 27F we observed a recovery in the genetic diversity of E. analoga and E. hirsuticauda and decrease in the genetic diversity in O. tuberculata in 2/3 of sampled areas. Emerita analoga displayed decrease of genetic differentiation and increase in gene flow explained by long-range population expansion. The other two species revealed slight increase in the number of genetic groups, little change in gene flow and no signal of population expansion associated to adult survival, rapid colonization, and capacity to burrow in the sand. Our results reveal that species response to a same disturbance event could be extremely diverse and depending on life-history traits and the magnitude of the effect.


Assuntos
Crustáceos/genética , Terremotos , Fluxo Gênico , Tsunamis , Anfípodes/genética , Animais , Praias , Chile , Haplótipos/genética , Isópodes/genética , Larva , Alinhamento de Sequência , Homologia de Sequência do Ácido Nucleico
9.
J Phycol ; 55(5): 1096-1114, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31206679

RESUMO

In this study, we explored how past terrestrial and marine climate changes have interacted to shape the phylogeographic patterns of the intertidal red seaweed Gracilaria caudata, an economically important species exploited for agar production in the Brazilian north-east. Seven sites were sampled along the north-east tropical and south-east sub-tropical Brazilian coast. The genetic diversity and structure of G. caudata was inferred using a combination of mitochondrial (COI and cox2-3), chloroplast (rbcL) and 15 nuclear microsatellite markers. A remarkable congruence between nuclear, mitochondrial and chloroplast data revealed clear separation between the north-east (from 03° S to 08° S) and the south-east (from 20° S to 23° S) coast of Brazil. These two clades differ in their demographic histories, with signatures of recent demographic expansions in the north-east and divergent populations in the south-east, suggesting the maintenance of several refugia during the last glacial maximum due to sea-level rise and fall. The Bahia region (around 12° S) occupies an intermediate position between both clades. Microsatellites and mtDNA markers showed additional levels of genetic structure within each sampled site located south of Bahia. The separation between the two main groups in G. caudata is likely recent, probably occurring during the Quaternary glacial cycles. The genetic breaks are concordant with (i) those separating terrestrial refugia, (ii) major river outflows and (iii) frontiers between tropical and subtropical regions. Taken together with previously published eco-physiological studies that showed differences in the physiological performance of the strains from distinct locations, these results suggest that the divergent clades in G. caudata correspond to distinct ecotypes in the process of incipient speciation and thus should be considered for the management policy of this commercially important species.


Assuntos
Gracilaria , Rodófitas , Brasil , DNA Mitocondrial , Variação Genética , Genética Populacional , Haplótipos , Filogenia , Filogeografia
10.
J Phycol ; 55(2): 297-313, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30570145

RESUMO

A recent molecular taxonomic study along the Chilean coast (18° S-53° S) described 18 candidate species of bladed Bangiales of which only two were formally described. Few studies focused on local genetic and morphological diversity of bladed Bangiales and attempted to determine their intertidal distribution in contrasting habitats, and none were performed in Chile. To delimit intertidal distributions of genetic species, 66 samples of bladed Bangiales were collected at Maitencillo (32° S) in four zones: a rocky platform, a rocky wall, and two boulders zones surrounded by sandy and rocky bottoms, respectively. These samples were identified based on sequences of the mitochondrial COI and chloroplast rbcL markers. We also collected 87 specimens for morphological characterization of the most common species, rapidly assessing their putative species identity using newly developed species-diagnostic (PCR-RFLP) markers. Eight microscopic and two macroscopic morphological traits were measured. We described and named three of four species that predominate in Maitencillo (including Pyropia orbicularis): Pyropia variabilis Zapata, Meynard, Ramírez, Contreras-Porcia, sp. nov., Porphyra luchea Meynard, Ramírez, Contreras-Porcia sp. nov., and Porphyra longissima Meynard, Ramírez, Contreras-Porcia, sp. nov. With the exception of Po. longissima restricted to boulders surrounded by sandy bottom, and a morphotype of Py. variabilis restricted to rocky walls, the other species/morphotypes have overlapping intertidal distributions. Except for Po. longissima, which is clearly differentiated morphologically (longest and thinnest blades), we conclude that morphology is not sufficient to differentiate bladed Bangiales. Our findings underscore the importance of refining our knowledge of intrinsic and environmental determinants on the distribution of bladed Bangiales.


Assuntos
Porphyra , Rodófitas , Chile , Filogenia
11.
BMC Evol Biol ; 18(1): 183, 2018 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-30518318

RESUMO

BACKGROUND: Algal isomorphic biphasic life cycles alternate between free-living diploid (tetrasporophytes) and haploid (dioicious gametophytes) phases and the hypotheses explaining their maintenance are still debated. Classic models state that conditional differentiation between phases is required for the evolutionary stability of biphasic life cycles while other authors proposed that the uneven ploidy abundances observed in the field are explained by their cytological differences in spore production. RESULTS: We monitored the state and fate of individuals of the red seaweed Gracilaria chilensis periodically for 3 years in five intertidal pools from two sites with distinct conditions. We tested for differentiation in fecundity and spore survival among the gametophyte males and females (haploids) and the tetrasporophytes (diploids). We tested for the influence of fecundity and spore survival on the observed uneven ploidy abundances in recruits. The probability of a frond becoming fecund was size-dependent, highest for the haploid males and lowest for the haploid females, with the diploids displaying intermediate probabilities. Fecund diploids released more tetraspores than carpospores released by the haploid females. Spore survival depended on ploidy and on the local density of co-habiting adult fronds. An advantage of diploid over haploid germlings was observed at very low and very high adult fronds densities. CONCLUSIONS: Neither spore production nor spore survival determined the highly variable ploidy ratio within G. chilensis recruits. This result invalidates the hypothesis of natural cytological differences in spore production as the only driver of uneven field ploidy abundances in this species. Diploid spores (carpospores) survived better than haploid spores (tetraspores), especially in locations and time periods that were associated with the occurrence of strong biotic and abiotic stressors. We hypothesise that carpospore survival is higher due to support by their haploid female progenitors passing-on nutrients and chemical compounds improving survival under stressful conditions.


Assuntos
Diploide , Gracilaria/genética , Gracilaria/fisiologia , Haploidia , Análise de Variância , Probabilidade , Esporos
12.
BMC Evol Biol ; 18(1): 174, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30458728

RESUMO

BACKGROUND: Conditional differentiation is one of the most fundamental drivers of biodiversity. Competitive entities (usually species) differ in environmental or ecological niche enabling them to co-exist. Conditional differentiation of haploid and diploid generations is considered to be a requirement for the evolutionary stability of isomorphic biphasic life-cycles and the cause for the natural occurrence of both phases at uneven abundances. Theoretically, stage dependent survival rates are the most efficient way to explain conditional differentiation. RESULTS: We tested for conditional differentiation in survival rates among life stages (haploid males, haploid females, and diploids) of Gracilaria chilensis, an intertidal red alga occurring along the Chilean shores. Therefore, the fate of individuals was followed periodically for 3 years in five intertidal pools and, for the first time in isomorphic red algae, a composite model of the instantaneous survival rates was applied. The results showed the survival dependency on density (both competition and Allee effects), fertility, age, size, season and location, as well as the differentiation among stages for the survival dependencies of these factors. The young haploid females survived more than the young of the other stages under Allee effects during the environmentally stressful season at the more exposed locations, and under self-thinning during the active growth season. Furthermore, fertile haploid females had a higher survival than fertile haploid males or fertile diploids. CONCLUSIONS: Here, we show a survival advantage of haploids over diploids. The haploid females probably optimize their resource management targeting structural and physiological adaptations that significantly enhance survival under harsher conditions. In a companion paper we demonstrate a fertility advantage of diploids over haploids. Together, the survival and fertility differentiation support the evolution and prevalence of biphasic life-cycles.


Assuntos
Gracilaria/crescimento & desenvolvimento , Haploidia , Estágios do Ciclo de Vida , Chile , Ecossistema , Fertilidade , Probabilidade , Estações do Ano
13.
J Phycol ; 54(6): 860-869, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30222862

RESUMO

In terrestrial plants, it is well known that genetic diversity can affect responses to abiotic and biotic stress and have important consequences on farming. However, very little is known about the interactive effects of genetic and environmental factors on seaweed crops. We conducted a field experiment on Gracilaria chilensis to determine the effect of heterozygosity and nutrient addition on two southern Chilean farms: Ancud and Chaica. In addition to growth rate and productivity, we measured photosynthetic responses, photosynthetic pigment concentration (chlorophyll a and phycobiliproteins), C:N ratio (C:N), and epiphytic load. Nutrient addition affected the growth rate, productivity, phycobilin, and C:N content, but not the epiphytic load. These results were independent of the heterozygosity of the strains used in the experiments. Interestingly, depending on the sampled sites, distinct photosynthetic responses (i.e., maximal quantum yield, Fv /Fm , and maximal electron transport rate, ETRmax ) to nutrient addition were observed. We propose that thallus selection over the past few decades may have led to ecological differentiation between G. chilensis from Chaica and Ancud. The lack of effect of heterozygosity on growth and physiological responses could be related to the species domestication history in which there is a limited range of genetic variation in farms. We suggest that the existing levels of heterozygosity among our thalli is not sufficient to detect any significant effect of genetic diversity on growth or productivity in Metri bay, our experimental site located close to the city of Puerto Montt, during summer under nitrogen limiting conditions.


Assuntos
Aquicultura , Variação Genética , Gracilaria/fisiologia , Nutrientes/fisiologia , Proteínas de Algas/metabolismo , Carbono/metabolismo , Chile , Clorofila A/metabolismo , Geografia , Gracilaria/genética , Nitrogênio/metabolismo , Fotossíntese , Ficobiliproteínas/metabolismo
14.
J Phycol ; 53(1): 17-31, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27454456

RESUMO

The genus Ectocarpus (Ectocarpales, Phaeophyceae) contains filamentous algae widely distributed in marine and estuarine habitats of temperate regions in both hemispheres. While E. siliculosus has become a model organism for genomics and genetics of the brown macroalgae, accurate species delineation, distribution patterns and diversity for the genus Ectocarpus remain problematic. In this study, we used three independent species delimitation approaches to generate a robust species hypothesis for 729 Ectocarpus specimens collected mainly along the European and Chilean coasts. These approaches comprised phylogenetic reconstructions and two bioinformatics tools developed to objectively define species boundaries (General Mixed Yule Coalescence Method and Automatic Barcode Gap Discovery). Our analyses were based on DNA sequences of two loci: the mitochondrial cytochrome oxidase subunit 1 and the nuclear internal transcribed spacer 1 of the ribosomal DNA. Our analyses showed the presence of at least 15 cryptic species and suggest the existence of incomplete lineage sorting or introgression between five of them. These results suggested the possible existence of different levels of reproductive barriers within this species complex. We also detected differences among species in their phylogeographic patterns, range and depth distributions, which may suggest different biogeographic histories (e.g., endemic species or recent introductions).


Assuntos
Variação Genética , Phaeophyceae/classificação , Phaeophyceae/genética , Filogenia , Chile , Código de Barras de DNA Taxonômico , DNA Mitocondrial/genética , Europa (Continente) , Filogeografia , Análise de Sequência de DNA , Especificidade da Espécie
15.
J Phycol ; 52(5): 806-816, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27317474

RESUMO

Mazzaella laminarioides is a common haploid-diploid red alga that forms dense beds. This alga has a wide distributional range, covering 3,500 km of the Chilean coast, but is restricted to high rocky intertidal zones. Recently, the existence of three highly divergent genetic lineages was demonstrated for this taxon, and two cytoplasmic markers were used to determine that these lineages are distributed in strict parapatry. Here, using 454 next-generation sequencing, we developed polymorphic microsatellite loci that cross amplify in all three cytoplasmic lineages. Six sites (i.e., two sites within each lineage) were analyzed using nine microsatellite loci. Our work shows that, although substantial cytoplasmic differentiation occurs within M. laminarioides, the microsatellite loci did not retrieve three nuclear genetic clusters as expected. Indeed, while the northernmost and southernmost cytoplasmic lineages form two strongly divergent nuclear groups characterized by diagnostic alleles, the third cytoplasmic lineage did not form a third nuclear independent group. It is possible that inter-lineage gene exchange has occurred, particularly at sites along the contact zone between the different cytoplasmic lineages. This nuclear-cytoplasmic incongruence in M. laminarioides could be explained by incomplete lineage sorting of the nuclear genes or asymmetric introgressive hybridization between the lineages. Finally, highly significant heterozygote deficiencies (suggesting occurrence of intergametophytic selfing) were observed in the three small northernmost sites while the large southernmost sites generally approached panmixia.


Assuntos
Marcadores Genéticos , Variação Genética , Repetições de Microssatélites , Rodófitas/genética , Chile , DNA de Algas/genética , Análise de Sequência de DNA
16.
Mol Phylogenet Evol ; 94(Pt B): 814-826, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26484942

RESUMO

A molecular taxonomic study of the bladed Bangiales of the South Eastern Pacific (coast of Chile) was undertaken based on sequence data of the mitochondrial COI and chloroplast rbcL for 193 specimens collected from Arica (18°S) in the north to South Patagonia (53°S) in the south. The results revealed for the first time that four genera, Porphyra, Pyropia, Fuscifolium and Wildemania were present in the region. Species delimitation was determined based on a combination of a General Mixed Yule Coalescence model (GMYC) and Automatic Barcode Gap Discovery (ABGD) coupled with detection of monophyly in tree reconstruction. The overall incongruence between the species delimitation methods within each gene was 29%. The GMYC method led to over-splitting groups, whereas the ABGD method had a tendency to lump groups. Taking a conservative approach to the number of putative species, at least 18 were recognized and, with the exception of the recently described Pyropia orbicularis, all were new to the Chilean flora. Porphyra and Pyropia were the most diverse genera with eight 'species' each, whereas only a 'single' species each was found for Fuscifolium and Wildemania. There was also evidence of recently diverging groups: Wildemania sp. was distinct but very closely related to W. amplissima from the Northern Hemisphere and raises questions in relation to such disjunct distributions. Pyropia orbicularis was very closely related to two other species, making species delimitation very difficult but provides evidence of an incipient speciation. The difference between the 'species' discovered and those previously reported for the region is discussed in relation to the difficulty of distinguishing species based on morphological identification.


Assuntos
Rodófitas/classificação , Evolução Biológica , Chile , Código de Barras de DNA Taxonômico/métodos , Marcadores Genéticos , Especiação Genética , Variação Genética , Filogenia , Porphyra , Rodófitas/genética
17.
PLoS One ; 9(12): e114039, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25501717

RESUMO

The history of a domesticated marine macroalga is studied using archaeological, phylogeographic and population genetic tools. Phylogeographic and population genetic analyses demonstrated that the cultivated red alga Gracilaria chilensis colonised the Chilean coast from New Zealand. Combining archaeological observations with phylogeographic data provided evidence that exchanges between New Zealand and Chile have occurred at least before the Holocene, likely at the end of the Last Glacial Maximum (LGM) and we suggest that migration probably occurred via rafting. Furthermore, the remarkably low microsatellite diversity found in the Chilean populations compared to those in New Zealand is consistent with a recent genetic bottleneck as a result of over-exploitation of natural populations and/or the process of domestication. Therefore, the aquaculture of this seaweed, based essentially on clonal propagation, is occurring from genetically depressed populations and may be driving the species to an extinction vortex in Chile.


Assuntos
Evolução Molecular , Gracilaria/genética , Alga Marinha/genética , Arqueologia , DNA Intergênico/genética , Variação Genética , Repetições de Microssatélites/genética , Oceano Pacífico , Filogeografia
18.
BMC Evol Biol ; 12: 97, 2012 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-22731925

RESUMO

BACKGROUND: The Chilean shoreline, a nearly strait line of coast expanding across 35 latitudinal degrees, represents an interesting region to assess historical processes using phylogeographic analyses. Stretching along the temperate section of the East Pacific margin, the region is characterized by intense geologic activity and has experienced drastic geomorphological transformations linked to eustatic and isostatic changes during the Quaternary. In this study, we used two molecular markers to evaluate the existence of phylogeographic discontinuities and detect the genetic footprints of Pleistocene glaciations among Patagonian populations of Mazzaella laminarioides, a low-dispersal benthic intertidal red seaweed that inhabits along ~3,700 km of the Chilean coastal rocky shore. RESULTS: Three main genetic lineages were found within M. laminarioides. They are distributed along the Chilean coast in strict parapatry. The deep divergence among lineages suggests that they could be considered putative genetic sibling species. Unexpectedly, genetic breaks were not strictly concordant with the biogeographic breaks described in the region. A Northern lineage was restricted to a broad transition zone located between 30°S and 33°S and showed signals of a recent bottleneck. The reduction of population size could be related to warm events linked to El Niño Southern Oscillation, which is known to cause massive seaweed mortality in this region. To the south, we propose that transient habitat discontinuities driven by episodic tectonic uplifting of the shoreline around the Arauco region (37°S-38°S); one of the most active forearc-basins in the South East Pacific; could be at the origin of the Central/South genetic break. The large beaches, located around 38°S, are likely to contribute to the lineages' integrity by limiting present gene flow. Finally, the Southern lineage, occupies an area affected by ice-cover during the last glaciations. Phylogeny suggested it is a derived clade and demographic analyses showed the lineage has a typical signature of postglacial recolonization from a northern glacial refugium area. CONCLUSIONS: Even if environmental adaptation could have strengthened divergence among lineages in M. laminarioides, low dispersal capacity and small population size are sufficient to generate phylogeographic discontinuities determined by genetic drift alone. Interestingly, our results confirm that seaweed population connectivity over large geographic scales does not rely only on dispersal capacity but also seem to depend highly on substratum availability and population density of the receiving locality.


Assuntos
Especiação Genética , Genética Populacional , Filogeografia , Rodófitas/classificação , Chile , DNA de Algas/genética , DNA de Cloroplastos/genética , DNA Mitocondrial/genética , Ecossistema , Variação Genética , Haplótipos , Filogenia , Rodófitas/genética , Análise de Sequência de DNA
19.
J Phycol ; 48(2): 365-72, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27009726

RESUMO

Bulk segregant analysis, random amplified polymorphic DNA (RAPD), and sequence characterized amplified region (SCAR) methods were used to identify sex-linked molecular markers in the haploid-diploid rhodophyte Gracilaria chilensis C. J. Bird, McLachlan et E. C. Oliveira. One hundred and eighty 10 bp primers were tested on three bulks of DNA: haploid males, haploid females, and diploid tetrasporophytes. Three RAPD primers (OPD15, OPG16, and OPN20) produced male-specific bands; and one RAPD primer (OPD12), a female-specific band. The sequences of the cloned putative sex-specific PCR fragments were used to design specific primers for the female marker SCAR-D12-386 and the male marker SCAR-G16-486. Both SCAR markers gave unequivocal band patterns that allowed sex and phase to be determined in G. chilensis. Thus, all the females presented only the female band, and all the males only the male band, while all the tetrasporophytes amplified both male and female bands. Despite this sex-specific association, we were able to amplify SCAR-D12-386 and SCAR-G16-486 in both sexes at low melting temperature. The differences between male and female sequences were of 8%-9% nucleotide divergence for SCAR-D12-386 and SCAR-G16-486, respectively. SCAR-D12-386 and SCAR-G16-486 could represent degenerated or diverged sequences located in the nonrecombining region of incipient sex chromosomes or heteromorphic sex chromosomes with sequence differences at the DNA level such that PCR primers amplify only one allele and not the other in highly specific PCR conditions. Seven gametic progenies composed of 19 males, 19 females, and the seven parental tetrasporophytes were analyzed. In all of them, the two SCAR markers segregated perfectly with sexual phenotypes.

20.
Evolution ; 62(6): 1500-19, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18346220

RESUMO

The extent of changes in genetic diversity and life-history traits associated with farming was investigated in the haploid-diploid red alga, Gracilaria chilensis, cultivated in Chile. This alga belongs to one of the most frequently cultivated seaweed genera around the world. Fifteen farmed populations, 11 wild populations, and two subspontaneous populations were sampled along the Chilean coast. The frequency of reproductive versus vegetative individuals and of haploid versus diploid individuals was checked in each population. In addition, the distribution of genetic variation in wild and cultivated populations was analyzed using six microsatellite markers. Our results first demonstrated that farmed populations are maintained almost exclusively by vegetative propagation. Moreover, the predominance of diploid individuals in farms showed that farming practices had significantly modified life-history traits as compared to wild populations. Second, the expected reduction in genetic diversity due to a cultivation bottleneck and subsequent clonal propagation was detected in farms. Finally, our study suggested that cultural practices in the southern part of the country contributed to the spread of selected genotypes at a local scale. Altogether, these results document for the first time that involuntary selection could operate during the first step of domestication in a marine plant.


Assuntos
Variação Genética , Genética Populacional , Gracilaria/genética , Ploidias , Agricultura , Chile , Genótipo , Desequilíbrio de Ligação , Repetições de Microssatélites/genética , Reprodução Assexuada/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA