Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ISME J ; 8(11): 2180-92, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24813564

RESUMO

Nitrogen fixation, the biological reduction of dinitrogen gas (N2) to ammonium (NH4(+)), is quantitatively the most important external source of new nitrogen (N) to the open ocean. Classically, the ecological niche of oceanic N2 fixers (diazotrophs) is ascribed to tropical oligotrophic surface waters, often depleted in fixed N, with a diazotrophic community dominated by cyanobacteria. Although this applies for large areas of the ocean, biogeochemical models and phylogenetic studies suggest that the oceanic diazotrophic niche may be much broader than previously considered, resulting in major implications for the global N-budget. Here, we report on the composition, distribution and abundance of nifH, the functional gene marker for N2 fixation. Our results show the presence of eight clades of diazotrophs in the oxygen minimum zone (OMZ) off Peru. Although proteobacterial clades dominated overall, two clusters affiliated to spirochaeta and archaea were identified. N2 fixation was detected within OMZ waters and was stimulated by the addition of organic carbon sources supporting the view that non-phototrophic diazotrophs were actively fixing dinitrogen. The observed co-occurrence of key functional genes for N2 fixation, nitrification, anammox and denitrification suggests that a close spatial coupling of N-input and N-loss processes exists in the OMZ off Peru. The wide distribution of diazotrophs throughout the water column adds to the emerging view that the habitat of marine diazotrophs can be extended to low oxygen/high nitrate areas. Furthermore, our statistical analysis suggests that NO2(-) and PO4(3-) are the major factors affecting diazotrophic distribution throughout the OMZ. In view of the predicted increase in ocean deoxygenation resulting from global warming, our findings indicate that the importance of OMZs as niches for N2 fixation may increase in the future.


Assuntos
Fixação de Nitrogênio , Água do Mar/microbiologia , Archaea/genética , Archaea/isolamento & purificação , Bactérias/genética , Bactérias/isolamento & purificação , Cianobactérias/genética , Cianobactérias/isolamento & purificação , Desnitrificação , Processos Heterotróficos , Nitratos/análise , Fixação de Nitrogênio/genética , Oceanos e Mares , Oxirredutases/classificação , Oxirredutases/genética , Oxigênio/análise , Peru , Filogenia , Proteobactérias/genética , Proteobactérias/isolamento & purificação , Água do Mar/química
2.
PLoS One ; 8(8): e68661, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23990875

RESUMO

In Eastern Boundary Upwelling Systems nutrient-rich waters are transported to the ocean surface, fuelling high photoautotrophic primary production. Subsequent heterotrophic decomposition of the produced biomass increases the oxygen-depletion at intermediate water depths, which can result in the formation of oxygen minimum zones (OMZ). OMZs can sporadically accumulate hydrogen sulfide (H2S), which is toxic to most multicellular organisms and has been implicated in massive fish kills. During a cruise to the OMZ off Peru in January 2009 we found a sulfidic plume in continental shelf waters, covering an area >5500 km(2), which contained ∼2.2×10(4) tons of H2S. This was the first time that H2S was measured in the Peruvian OMZ and with ∼440 km(3) the largest plume ever reported for oceanic waters. We assessed the phylogenetic and functional diversity of the inhabiting microbial community by high-throughput sequencing of DNA and RNA, while its metabolic activity was determined with rate measurements of carbon fixation and nitrogen transformation processes. The waters were dominated by several distinct γ-, δ- and ε-proteobacterial taxa associated with either sulfur oxidation or sulfate reduction. Our results suggest that these chemolithoautotrophic bacteria utilized several oxidants (oxygen, nitrate, nitrite, nitric oxide and nitrous oxide) to detoxify the sulfidic waters well below the oxic surface. The chemolithoautotrophic activity at our sampling site led to high rates of dark carbon fixation. Assuming that these chemolithoautotrophic rates were maintained throughout the sulfidic waters, they could be representing as much as ∼30% of the photoautotrophic carbon fixation. Postulated changes such as eutrophication and global warming, which lead to an expansion and intensification of OMZs, might also increase the frequency of sulfidic waters. We suggest that the chemolithoautotrophically fixed carbon may be involved in a negative feedback loop that could fuel further sulfate reduction and potentially stabilize the sulfidic OMZ waters.


Assuntos
Bactérias/genética , Crescimento Quimioautotrófico/fisiologia , Sulfeto de Hidrogênio/química , Oxigênio/química , Água do Mar/química , Bactérias/isolamento & purificação , Bactérias/metabolismo , Biomassa , Ciclo do Carbono , Dióxido de Carbono/química , Análise por Conglomerados , Coloides/química , Ecossistema , Citometria de Fluxo/métodos , Genoma Bacteriano , Nitrogênio/química , Oceano Pacífico , Peru , Filogenia , Análise de Sequência de DNA , Análise de Sequência de RNA , Sulfetos/química , Microbiologia da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA