RESUMO
The 1,3-dipolar cycloaddition reactions of azomethine ylides is one of the preferred methods for the synthesis of polysubstituted pyrrolidines. The use of chiral dipolarophiles derived from carbohydrates yields enantiomerically pure pyrrolidines, usually in good to excellent endo selectivities, along with other minor stereoisomers. Recently, we found an unusual isomerization event that allowed the isolation of useful pyrrolidines with relative stereochemistries difficult to obtain otherwise. Although a simple and efficient protocol to promote these transformations was developed, the mechanism was not fully unravelled. Herein, after a combination of experimental, spectroscopic and computational studies (using DFT methods) we propose that this isomerization event takes place through a retro-Mannich//Mannich cascade, via the formation of an iminium ion with E geometry.
RESUMO
The structure of rubriflordilactone B (2) was determined by X-ray crystallography. However, the NMR data of the synthetic sample did not match those reported for 2. It was then suggested that the original sample contained an additional isomer of different solubility, pseudorubriflordilactone B (3), whose structure remained unknown. From theoretical calculations, reexamination of the NMR data, and biogenetic considerations, it is proposed that 3 should be the 16S,17R isomer of 2.
RESUMO
The calculations of NMR properties of molecules using quantum chemical methods have deeply impacted several branches of organic chemistry. They are particularly important in structural or stereochemical assignments of organic compounds, with implications in total synthesis, stereoselective reactions, and natural products chemistry. In studying the evolution of the strategies developed to support (or reject) a structural proposal, it becomes clear that the most effective and accurate ones involve sophisticated procedures to correlate experimental and computational data. Owing to their relatively high mathematical complexity, such calculations (CP3, DP4, ANN-PRA) are often carried out using additional computational resources provided by the authors (such as applets or Excel files). This Minireview will cover the state-of-the-art of these toolboxes in the assignment of organic molecules, including mathematical definitions, updates, and discussion of relevant examples.
RESUMO
The DP4 probability is one of the most sophisticated and popular approaches for the stereochemical assignment of organic molecules using GIAO NMR chemical shift calculations when only one set of experimental data is available. In order to improve the performance of the method, we have developed a modified probability (DP4+), whose main differences from the original DP4 are the inclusion of unscaled data and the use of higher levels of theory for the NMR calculation procedure. With these modifications, a significant improvement in the overall performance was achieved, providing accurate and confident results in establishing the stereochemistry of 48 challenging isomeric compounds.
RESUMO
DFT calculations suggest that O-monoacyl L-tartaric acids catalyze the asymmetric conjugate alkenylboration of enones through transition structures that are stabilized by hydrogen-bonding interactions. Formation of a five-membered acyloxyborane is proposed. The hydrogen of the free carboxy group derived from the catalyst interacts with the carbonyl group of the cyclic acyloxyborane, stabilizing the transition structure and reducing the flexibility of the system. Additional stabilizing nonclassical CH···O hydrogen-bond interactions seem to determine the observed enantioselectivity.
Assuntos
Boranos/síntese química , Cetonas/química , Tartaratos/química , Boranos/química , Catálise , Ligação de Hidrogênio , Conformação Molecular , EstereoisomerismoRESUMO
The effect of the nature of the boron moiety upon the reactivity and the selectivity of a variety of vinylboron dienophiles (1-12) in the Diels-Alder (DA) reaction was investigated using density functional theory and the quantum theory of atoms in molecules. The calculated reactivity of the dienophiles decreases in the order vinylborane (1) > dihalovinylboranes (2-4) > dialkylvinylboranes (5-7) ≈ vinyl boronic acid (8) > vinylboronates (9, 10) > vinyl MIDA boronate (11) ≈ vinyltrifluoroborate (12). The DA reactions of 1-7 were slightly endo-selective due to the stronger C6-B secondary orbital interaction in the endo transition structures (TSs) evaluated by the C6|B delocalization index. In the TSs of 5 and 7, a combination of electronic and steric factors reduce the endo selectivity. The moderate exo selectivity calculated for the DA reactions of boronates 8-11 was attributed mainly to the hydrogen bond between the oxygen atom of boronate moieties and one of the acidic hydrogens of the methylene of cyclopentadiene in the exo TSs, which also reduces the ability of the oxygen lone pairs to donate electron density into the vacant boron orbital. Interestingly, the cooperative effect between the two hydrogen bonds in the exo TS of the DA reaction of vinyltrifluoroborate (12) determines the almost exclusive exo selectivity predicted for this DA reaction. We propose that the relative reactivities of the dienophiles can be estimated by the charge density (ρr) and its Laplacian (∇(2)ρr) at the (3,+1) critical point in the topology of ∇(2)ρr, evaluated at the reactant molecules in the ground state. The profiles of the several topological parameters along the reaction are affected by the nature of the substituents attached to the boron atom and by the mode of addition (endo and exo) in the DA reactions.
Assuntos
Alcenos/química , Compostos de Boro/química , Elétrons , Teoria Quântica , Compostos de Boro/síntese química , Estrutura MolecularRESUMO
The Diels-Alder reactions of simple unsaturated boronates have been investigated using computational methods and the results were compared with those for the analogue dihalo- and dialkylboranes. Our results indicate that the activating effect of the boronate moiety is small. All the studied reactions are concerted normal electron-demand Diels-Alder reactions with asynchronous transition structures and weak [4 + 3] C-B secondary orbital interactions, which explains the low experimental reactivity. Both electronic and steric effects contribute to give the observed low stereo- and regioselectivities.