Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Food ; 3(5): 318-324, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-37117579

RESUMO

As crop yields are pushed closer to biophysical limits, achieving yield gains becomes increasingly challenging and will require more insight into deterministic pathways to yields. Here, we propose a wiring diagram as a platform to illustrate the interrelationships of the physiological traits that impact wheat yield potential and to serve as a decision support tool for crop scientists. The wiring diagram is based on the premise that crop yield is a function of photosynthesis (source), the investment of assimilates into reproductive organs (sinks) and the underlying processes that enable expression of both. By illustrating these linkages as coded wires, the wiring diagram can show connections among traits that may not have been apparent, and can inform new research hypotheses and guide crosses designed to accumulate beneficial traits and alleles in breeding. The wiring diagram can also serve to create an ever-richer common point of reference for refining crop models in the future.

3.
Biology (Basel) ; 10(9)2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34571732

RESUMO

Grain yield (YLD) is a function of the total biomass (BM) and of partitioning the biomass by grains, i.e., the harvest index (HI). The most critical developmental stage for their determination is the flowering time, which mainly depends on the vernalization requirement (Vrn) and photoperiod sensitivity genes (Ppd) loci. Allelic variants at the Vrn, Ppd, and earliness per se (Eps) genes of elite spring wheat genotypes included in High Biomass Association Panel (HiBAP) I and II were used to estimate their effects on the phenological stages BM, HI, and YLD. Each panel was grown for two consecutive years in Northwest Mexico. Spring alleles at Vrn-1 had the largest effect on shortening the time to anthesis, and the Ppd-insensitive allele Ppd-D1a had the most significant positive effect on YLD in both panels. In addition, alleles at TaTOE-B1 and TaFT3-B1 promoted between 3.8% and 7.6% higher YLD and 4.2% and 10.2% higher HI in HiBAP I and II, respectively. When the possible effects of the TaTOE-B1 and TaFT3-B1 alleles on the sink and source traits were explored, the favorable allele at TaTOE-B1 showed positive effects on several sink traits mainly related to grain number. The favorable alleles at TaFT3-B1 followed a different pattern, with positive effects on the traits related to grain weight. The results of this study expanded the wheat breeders' toolbox in the quest to breed better-adapted and higher-yielding wheat cultivars.

4.
Field Crops Res ; 196: 294-304, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28148999

RESUMO

Developmental patterns strongly influence spike fertility and grain number, which are primarily determined during the stem elongation period (i.e. time between terminal spikelet phase and anthesis). It has been proposed that the length of the stem elongation phase may, to an extent, affect grain number; thus it would be beneficial to identify genetic variation for the duration of this phase in elite germplasm. Variation in these developmental patterns was studied using 27 elite wheat lines in four experiments across three growing seasons. The results showed that the length of the stem elongation phase was (i) only slightly related to the period from seedling emergence to terminal spikelet, and (ii) more relevant than it for determining time to anthesis. Thus, phenological phases were largely independent and any particular time to anthesis may be reached with different combinations of component phases. Yield components were largely explained by fruiting efficiency of the elite lines used: the relationships were strongly positive and strongly negative with grain number and with grain weight, respectively. Although fruiting efficiency showed a positive trend with the duration of stem elongation that was not significant, a boundary function (which was highly significant) suggests that the length of this phase may impose an upper threshold for fruiting efficiency and grain number, and that maximum values of fruiting efficiency may require a relatively long stem elongation phase.

5.
Plant Cell Environ ; 35(10): 1799-823, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22860982

RESUMO

Wheat provides 20% of calories and protein consumed by humans. Recent genetic gains are <1% per annum (p.a.), insufficient to meet future demand. The Wheat Yield Consortium brings expertise in photosynthesis, crop adaptation and genetics to a common breeding platform. Theory suggest radiation use efficiency (RUE) of wheat could be increased ~50%; strategies include modifying specificity, catalytic rate and regulation of Rubisco, up-regulating Calvin cycle enzymes, introducing chloroplast CO(2) concentrating mechanisms, optimizing light and N distribution of canopies while minimizing photoinhibition, and increasing spike photosynthesis. Maximum yield expression will also require dynamic optimization of source: sink so that dry matter partitioning to reproductive structures is not at the cost of the roots, stems and leaves needed to maintain physiological and structural integrity. Crop development should favour spike fertility to maximize harvest index so phenology must be tailored to different photoperiods, and sensitivity to unpredictable weather must be modulated to reduce conservative responses that reduce harvest index. Strategic crossing of complementary physiological traits will be augmented with wide crossing, while genome-wide selection and high throughput phenotyping and genotyping will increase efficiency of progeny screening. To ensure investment in breeding achieves agronomic impact, sustainable crop management must also be promoted through crop improvement networks.


Assuntos
Cruzamento/métodos , Triticum/crescimento & desenvolvimento , Triticum/genética , Biomassa , Meio Ambiente , Luz , Modelos Biológicos , Fotossíntese , Locos de Características Quantitativas , Triticum/fisiologia , Triticum/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA