RESUMO
In subjects with peripheral vestibular disease and controls, we assessed: 1. The relationship between spatial anxiety and perceived stress, and 2. The combined contribution of spatial anxiety, spatial perspective-taking, and individual cofactors to dizziness-related handicap. 309 adults participated in the study (153 with and 156 without peripheral vestibular disease), including patients with bilateral vestibular deficiency, unilateral deficiency (evolution <3 or ≥3 months), Meniere's disease, and Benign Paroxysmal Positional Vertigo. Assessments included: general health, personal habits, spatial anxiety (3-domains), perceived stress, spatial perspective-taking, dizziness-related handicap (3-domains), unsteadiness, sleep quality, motion sickness susceptibility, trait anxiety/depression, state anxiety, depersonalization/derealization. After bivariate analyses, analysis of covariance was performed (p ≤ 0.05). Spatial anxiety was related to unsteadiness and perceived stress, with an inverse relationship with trait anxiety (ANCoVA, adjusted R2 = 0.27-0.30, F = 17.945-20.086, p < 0.00001). Variability on perspective-taking was related to vestibular disease, trait and state anxiety, motion sickness susceptibility, and age (ANCoVA, adjusted R2 = 0.18, F = 5.834, p < 0.00001). All domains of spatial anxiety contributed to the Physical domain of dizziness-related handicap, while the Navigation domain contributed to the Functional domain of handicap. Handicap variability was also related to unsteadiness, spatial perspective-taking, quality of sleep, and trait anxiety/depression (ANCoVA, adjusted R2 = 0.66, F = 39.07, p < 0.00001). Spatial anxiety is related to perceived stress in adults both with and without vestibular disease, subjects with trait anxiety rated lower on spatial anxiety. State anxiety and acute stress could be helpful for recovery after peripheral vestibular lesion. Spatial anxiety and perspective-taking contribute to the Physical and Functional domains of dizziness-related handicap, possibly because it discourages behavior beneficial to adaptation.
RESUMO
To assess the interactions between individual cofactors and multisensory inputs on the postural sway of adults with type 2 diabetes and healthy subjects, 69 adults accepted to participate in the study (48 with/ 21 without diabetes). Assessments included neuro-otology (sinusoidal-rotation and unilateral-centrifugation), ophthalmology and physiatry evaluations, body mass index (BMI), physical activity, quadriceps strength, the ankle/brachial index and polypharmacy. Postural sway was recorded on hard/soft surface, either with eyes open/closed, or without/with 30° neck extension. The proportional differences from the baseline of each condition were analyzed using Multivariate and Multivariable analyses. Patients with polyneuropathy and no retinopathy showed visual dependence, while those with polyneuropathy and retinopathy showed adaptation. Across sensory challenges, the vestibulo-ocular gain at 1.28 Hz and the BMI were mainly related to changes in sway area, while the dynamic visual vertical was mainly related to changes in sway length. The ankle/brachial index was related to the effect of neck extension, with contributions from quadriceps strength/physical activity, polyneuropathy and polypharmacy. Across conditions, men showed less sway than women did. In conclusion, in adults with diabetes, sensory inputs and individual cofactors differently contribute to postural stability according to context. Rehabilitation programs for adults with diabetes may require an individualized approach.