Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Am J Hum Genet ; 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39357517

RESUMO

Pathogenic constitutional APC variants underlie familial adenomatous polyposis, the most common hereditary gastrointestinal polyposis syndrome. To improve variant classification and resolve the interpretative challenges of variants of uncertain significance (VUSs), APC-specific variant classification criteria were developed by the ClinGen-InSiGHT Hereditary Colorectal Cancer/Polyposis Variant Curation Expert Panel (VCEP) based on the criteria of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology (ACMG/AMP). A streamlined algorithm using the APC-specific criteria was developed and applied to assess all APC variants in ClinVar and the International Society for Gastrointestinal Hereditary Tumours (InSiGHT) international reference APC Leiden Open Variation Database (LOVD) variant database, which included a total of 10,228 unique APC variants. Among the ClinVar and LOVD variants with an initial classification of (likely) benign or (likely) pathogenic, 94% and 96% remained in their original categories, respectively. In contrast, 41% ClinVar and 61% LOVD VUSs were reclassified into clinically meaningful classes, the vast majority as (likely) benign. The total number of VUSs was reduced by 37%. In 24 out of 37 (65%) promising APC variants that remained VUS despite evidence for pathogenicity, a data-mining-driven work-up allowed their reclassification as (likely) pathogenic. These results demonstrated that the application of APC-specific criteria substantially reduced the number of VUSs in ClinVar and LOVD. The study also demonstrated the feasibility of a systematic approach to variant classification in large datasets, which might serve as a generalizable model for other gene- or disease-specific variant interpretation initiatives. It also allowed for the prioritization of VUSs that will benefit from in-depth evidence collection. This subset of APC variants was approved by the VCEP and made publicly available through ClinVar and LOVD for widespread clinical use.

2.
bioRxiv ; 2024 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-39345488

RESUMO

Purpose: We previously developed an approach to calibrate computational tools for clinical variant classification, updating recommendations for the reliable use of variant impact predictors to provide evidence strength up to Strong . A new generation of tools using distinctive approaches have since been released, and these methods must be independently calibrated for clinical application. Method: Using our local posterior probability-based calibration and our established data set of ClinVar pathogenic and benign variants, we determined the strength of evidence provided by three new tools (AlphaMissense, ESM1b, VARITY) and calibrated scores meeting each evidence strength. Results All three tools reached the Strong level of evidence for variant pathogenicity and Moderate for benignity, though sometimes for few variants. Compared to previously recommended tools, these yielded at best only modest improvements in the tradeoffs of evidence strength and false positive predictions. Conclusion: At calibrated thresholds, three new computational predictors provided evidence for variant pathogenicity at similar strength to the four previously recommended predictors (and comparable with functional assays for some variants). This calibration broadens the scope of computational tools for application in clinical variant classification. Their new approaches offer promise for future advancement of the field.

3.
Genet Med ; 26(11): 101213, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39030733

RESUMO

PURPOSE: To investigate the number of rare missense variants observed in human genome sequences by ACMG/AMP PP3/BP4 evidence strength, following the ClinGen-calibrated PP3/BP4 computational recommendations. METHODS: Missense variants from the genome sequences of 300 probands from the Rare Genomes Project with suspected rare disease were analyzed using computational prediction tools that were able to reach PP3_Strong and BP4_Moderate evidence strengths (BayesDel, MutPred2, REVEL, and VEST4). The numbers of variants at each evidence strength were analyzed across disease-associated genes and genome-wide. RESULTS: From a median of 75.5 rare (≤1% allele frequency) missense variants in disease-associated genes per proband, a median of one reached PP3_Strong, 3-5 PP3_Moderate, and 3-5 PP3_Supporting. Most were allocated BP4 evidence (median 41-49 per proband) or were indeterminate (median 17.5-19 per proband). Extending the analysis to all protein-coding genes genome-wide, the number of variants reaching PP3_Strong score thresholds increased approximately 2.6-fold compared with disease-associated genes, with a median per proband of 1-3 PP3_Strong, 8-16 PP3_Moderate, and 10-17 PP3_Supporting. CONCLUSION: A small number of variants per proband reached PP3_Strong and PP3_Moderate in 3424 disease-associated genes. Although not the intended use of the recommendations, this was also observed genome-wide. Use of PP3/BP4 evidence as recommended from calibrated computational prediction tools in the clinical diagnostic laboratory is unlikely to inappropriately contribute to the classification of an excessive number of variants as pathogenic or likely pathogenic by ACMG/AMP rules.

5.
medRxiv ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38798681

RESUMO

MUTYH -associated polyposis (MAP) is an autosomal recessive disorder where the inheritance of constitutional biallelic pathogenic MUTYH variants predisposes a person to the development of adenomas and colorectal cancer (CRC). It is also associated with extracolonic and extraintestinal manifestations that may overlap with the phenotype of familial adenomatous polyposis (FAP). Currently, there are discrepancies in the literature regarding whether certain phenotypes are truly associated with MAP. This narrative review aims to explore the phenotypic spectrum of MAP to better characterise the MAP phenotype. A literature search was conducted to identify articles reporting on MAP-specific phenotypes. Clinical data from 2109 MAP patients identified from the literature showed that 1123 patients (53.2%) had CRC. Some patients with CRC had no associated adenomas, suggesting that adenomas are not an obligatory component of MAP. Carriers of the two missense founder variants, and possibly truncating variants, had an increased cancer risk when compared to those who carry other pathogenic variants. It has been suggested that somatic G:C>T:A transversions are a mutational signature of MAP, and could be used as a biomarker in screening and identifying patients with atypical MAP, or in associating certain phenotypes with MAP. The extracolonic and extraintestinal manifestations that have been associated with MAP include duodenal adenomas, duodenal cancer, fundic gland polyps, gastric cancer, ovarian cancer, bladder cancer and skin cancer. The association of breast cancer and endometrial cancer with MAP remains disputed. Desmoids and Congenital Hypertrophy of the Retinal Pigment Epithelium (CHRPEs) are rarely reported in MAP, but have long been seen in FAP patients, and thus could act as a distinguishing feature between the two. This collection of MAP phenotypes will assist in the assessment of pathogenic MUTYH variants using the American College of Medical Genetics and the Association for Molecular Pathology (ACMG/AMP) Variant Interpretation Guidelines, and ultimately improve patient care.

6.
medRxiv ; 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38746299

RESUMO

Background: Pathogenic constitutional APC variants underlie familial adenomatous polyposis, the most common hereditary gastrointestinal polyposis syndrome. To improve variant classification and resolve the interpretative challenges of variants of uncertain significance (VUS), APC-specific ACMG/AMP variant classification criteria were developed by the ClinGen-InSiGHT Hereditary Colorectal Cancer/Polyposis Variant Curation Expert Panel (VCEP). Methods: A streamlined algorithm using the APC -specific criteria was developed and applied to assess all APC variants in ClinVar and the InSiGHT international reference APC LOVD variant database. Results: A total of 10,228 unique APC variants were analysed. Among the ClinVar and LOVD variants with an initial classification of (Likely) Benign or (Likely) Pathogenic, 94% and 96% remained in their original categories, respectively. In contrast, 41% ClinVar and 61% LOVD VUS were reclassified into clinically actionable classes, the vast majority as (Likely) Benign. The total number of VUS was reduced by 37%. In 21 out of 36 (58%) promising APC variants that remained VUS despite evidence for pathogenicity, a data mining-driven work-up allowed their reclassification as (Likely) Pathogenic. Conclusions: The application of APC -specific criteria substantially reduced the number of VUS in ClinVar and LOVD. The study also demonstrated the feasibility of a systematic approach to variant classification in large datasets, which might serve as a generalisable model for other gene-/disease-specific variant interpretation initiatives. It also allowed for the prioritization of VUS that will benefit from in-depth evidence collection. This subset of APC variants was approved by the VCEP and made publicly available through ClinVar and LOVD for widespread clinical use.

7.
medRxiv ; 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38496501

RESUMO

Purpose: To investigate the number of rare missense variants observed in human genome sequences by ACMG/AMP PP3/BP4 evidence strength, following the calibrated PP3/BP4 computational recommendations. Methods: Missense variants from the genome sequences of 300 probands from the Rare Genomes Project with suspected rare disease were analyzed using computational prediction tools able to reach PP3_Strong and BP4_Moderate evidence strengths (BayesDel, MutPred2, REVEL, and VEST4). The numbers of variants at each evidence strength were analyzed across disease-associated genes and genome-wide. Results: From a median of 75.5 rare (≤1% allele frequency) missense variants in disease-associated genes per proband, a median of one reached PP3_Strong, 3-5 PP3_Moderate, and 3-5 PP3_Supporting. Most were allocated BP4 evidence (median 41-49 per proband) or were indeterminate (median 17.5-19 per proband). Extending the analysis to all protein-coding genes genome-wide, the number of PP3_Strong variants increased approximately 2.6-fold compared to disease-associated genes, with a median per proband of 1-3 PP3_Strong, 8-16 PP3_Moderate, and 10-17 PP3_Supporting. Conclusion: A small number of variants per proband reached PP3_Strong and PP3_Moderate in 3,424 disease-associated genes, and though not the intended use of the recommendations, also genome-wide. Use of PP3/BP4 evidence as recommended from calibrated computational prediction tools in the clinical diagnostic laboratory is unlikely to inappropriately contribute to the classification of an excessive number of variants as Pathogenic or Likely Pathogenic by ACMG/AMP rules.

8.
Am J Hum Genet ; 109(12): 2163-2177, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36413997

RESUMO

Recommendations from the American College of Medical Genetics and Genomics and the Association for Molecular Pathology (ACMG/AMP) for interpreting sequence variants specify the use of computational predictors as "supporting" level of evidence for pathogenicity or benignity using criteria PP3 and BP4, respectively. However, score intervals defined by tool developers, and ACMG/AMP recommendations that require the consensus of multiple predictors, lack quantitative support. Previously, we described a probabilistic framework that quantified the strengths of evidence (supporting, moderate, strong, very strong) within ACMG/AMP recommendations. We have extended this framework to computational predictors and introduce a new standard that converts a tool's scores to PP3 and BP4 evidence strengths. Our approach is based on estimating the local positive predictive value and can calibrate any computational tool or other continuous-scale evidence on any variant type. We estimate thresholds (score intervals) corresponding to each strength of evidence for pathogenicity and benignity for thirteen missense variant interpretation tools, using carefully assembled independent data sets. Most tools achieved supporting evidence level for both pathogenic and benign classification using newly established thresholds. Multiple tools reached score thresholds justifying moderate and several reached strong evidence levels. One tool reached very strong evidence level for benign classification on some variants. Based on these findings, we provide recommendations for evidence-based revisions of the PP3 and BP4 ACMG/AMP criteria using individual tools and future assessment of computational methods for clinical interpretation.


Assuntos
Calibragem , Humanos , Consenso , Escolaridade , Virulência
9.
PLoS One ; 15(8): e0233673, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32750050

RESUMO

Computational algorithms are often used to assess pathogenicity of Variants of Uncertain Significance (VUS) that are found in disease-associated genes. Most computational methods include analysis of protein multiple sequence alignments (PMSA), assessing interspecies variation. Careful validation of PMSA-based methods has been done for relatively few genes, partially because creation of curated PMSAs is labor-intensive. We assessed how PMSA-based computational tools predict the effects of the missense changes in the APC gene, in which pathogenic variants cause Familial Adenomatous Polyposis. Most Pathogenic or Likely Pathogenic APC variants are protein-truncating changes. However, public databases now contain thousands of variants reported as missense. We created a curated APC PMSA that contained >3 substitutions/site, which is large enough for statistically robust in silico analysis. The creation of the PMSA was not easily automated, requiring significant querying and computational analysis of protein and genome sequences. Of 1924 missense APC variants in the NCBI ClinVar database, 1800 (93.5%) are reported as VUS. All but two missense variants listed as P/LP occur at canonical splice or Exonic Splice Enhancer sites. Pathogenicity predictions by five computational tools (Align-GVGD, SIFT, PolyPhen2, MAPP, REVEL) differed widely in their predictions of Pathogenic/Likely Pathogenic (range 17.5-75.0%) and Benign/Likely Benign (range 25.0-82.5%) for APC missense variants in ClinVar. When applied to 21 missense variants reported in ClinVar and securely classified as Benign, the five methods ranged in accuracy from 76.2-100%. Computational PMSA-based methods can be an excellent classifier for variants of some hereditary cancer genes. However, there may be characteristics of the APC gene and protein that confound the results of in silico algorithms. A systematic study of these features could greatly improve the automation of alignment-based techniques and the use of predictive algorithms in hereditary cancer genes.


Assuntos
Proteína da Polipose Adenomatosa do Colo/genética , Polipose Adenomatosa do Colo/genética , Genes APC , Mutação de Sentido Incorreto , Algoritmos , Sequência de Aminoácidos , Biologia Computacional/métodos , Simulação por Computador , Bases de Dados de Proteínas , Elementos Facilitadores Genéticos , Evolução Molecular , Éxons , Variação Genética , Humanos , Filogenia , Isoformas de Proteínas/genética , Sítios de Splice de RNA , Alinhamento de Sequência/estatística & dados numéricos
10.
Genet Med ; 22(5): 847-856, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31965077

RESUMO

PURPOSE: Variants in the DNA mismatch repair (MMR) gene MSH6, identified in individuals suspected of Lynch syndrome, are difficult to classify owing to the low cancer penetrance of defects in that gene. This not only obfuscates personalized health care but also the development of a rapid and reliable classification procedure that does not require clinical data. METHODS: The complete in vitro MMR activity (CIMRA) assay was calibrated against clinically classified MSH6 variants and, employing Bayes' rule, integrated with computational predictions of pathogenicity. To enable the validation of this two-component classification procedure we have employed a genetic screen to generate a large set of inactivating Msh6 variants, as proxies for pathogenic variants. RESULTS: The genetic screen-derived variants established that the two-component classification procedure displays high sensitivities and specificities. Moreover, these inactivating variants enabled the direct reclassification of human variants of uncertain significance (VUS) as (likely) pathogenic. CONCLUSION: The two-component classification procedure and the genetic screens provide complementary approaches to rapidly and cost-effectively classify the large majority of human MSH6 variants. The approach followed here provides a template for the classification of variants in other disease-predisposing genes, facilitating the translation of personalized genomics into personalized health care.


Assuntos
Neoplasias Colorretais Hereditárias sem Polipose , Proteínas de Ligação a DNA/genética , Teorema de Bayes , Neoplasias Colorretais Hereditárias sem Polipose/genética , Reparo de Erro de Pareamento de DNA/genética , Humanos , Proteína 2 Homóloga a MutS/genética
11.
Genome Med ; 12(1): 3, 2019 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-31892348

RESUMO

BACKGROUND: The American College of Medical Genetics and Genomics (ACMG)/Association for Molecular Pathology (AMP) clinical variant interpretation guidelines established criteria for different types of evidence. This includes the strong evidence codes PS3 and BS3 for "well-established" functional assays demonstrating a variant has abnormal or normal gene/protein function, respectively. However, they did not provide detailed guidance on how functional evidence should be evaluated, and differences in the application of the PS3/BS3 codes are a contributor to variant interpretation discordance between laboratories. This recommendation seeks to provide a more structured approach to the assessment of functional assays for variant interpretation and guidance on the use of various levels of strength based on assay validation. METHODS: The Clinical Genome Resource (ClinGen) Sequence Variant Interpretation (SVI) Working Group used curated functional evidence from ClinGen Variant Curation Expert Panel-developed rule specifications and expert opinions to refine the PS3/BS3 criteria over multiple in-person and virtual meetings. We estimated the odds of pathogenicity for assays using various numbers of variant controls to determine the minimum controls required to reach moderate level evidence. Feedback from the ClinGen Steering Committee and outside experts were incorporated into the recommendations at multiple stages of development. RESULTS: The SVI Working Group developed recommendations for evaluators regarding the assessment of the clinical validity of functional data and a four-step provisional framework to determine the appropriate strength of evidence that can be applied in clinical variant interpretation. These steps are as follows: (1) define the disease mechanism, (2) evaluate the applicability of general classes of assays used in the field, (3) evaluate the validity of specific instances of assays, and (4) apply evidence to individual variant interpretation. We found that a minimum of 11 total pathogenic and benign variant controls are required to reach moderate-level evidence in the absence of rigorous statistical analysis. CONCLUSIONS: The recommendations and approach to functional evidence evaluation described here should help clarify the clinical variant interpretation process for functional assays. Further, we hope that these recommendations will help develop productive partnerships with basic scientists who have developed functional assays that are useful for interrogating the function of a variety of genes.


Assuntos
Variação Genética , Teorema de Bayes , Genoma Humano , Guias como Assunto , Humanos , Mutação com Perda de Função , Sociedades Médicas
12.
Genet Med ; 21(7): 1507-1516, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30523343

RESUMO

PURPOSE: Gene-disease associations implicated in hereditary colorectal cancer and polyposis susceptibility were evaluated using the ClinGen Clinical Validity framework. METHODS: Forty-two gene-disease pairs were assessed for strength of evidence supporting an association with hereditary colorectal cancer and/or polyposis. Genetic and experimental evidence supporting each gene-disease relationship was curated independently by two trained biocurators. Evidence was reviewed with experts and assigned a final clinical validity classification. RESULTS: Of all gene-disease pairs evaluated, 14/42 (33.3%) were Definitive, 1/42 (2.4%) were Strong, 6/42 (14.3%) were Moderate, 18/42 (42.9%) were Limited, and 3/42 (7.1%) were either No Reported Evidence, Disputed, or Refuted. Of panels in the National Institutes of Health Genetic Testing Registry, 4/26 (~15.4%) contain genes with Limited clinical evidence. CONCLUSION: Clinicians and laboratory diagnosticians should note that <60% of the genes on clinically available panels have Strong or Definitive evidence of association with hereditary colon cancer or polyposis, and >40% have only Moderate, Limited, Disputed, or Refuted evidence. Continuing to expand the structured assessment of the clinical relevance of genes listed on hereditary cancer testing panels will help clinicians and diagnostic laboratories focus the communication of genetic testing results on clinically significant genes.


Assuntos
Polipose Adenomatosa do Colo/genética , Neoplasias Colorretais/genética , Estudos de Associação Genética , Testes Genéticos , Predisposição Genética para Doença , Humanos , Modelos Genéticos , Medição de Risco
13.
Genet Med ; 21(7): 1486-1496, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30504929

RESUMO

PURPOSE: To enhance classification of variants of uncertain significance (VUS) in the DNA mismatch repair (MMR) genes in the cancer predisposition Lynch syndrome, we developed the cell-free in vitro MMR activity (CIMRA) assay. Here, we calibrate and validate the assay, enabling its integration with in silico and clinical data. METHODS: Two sets of previously classified MLH1 and MSH2 variants were selected from a curated MMR gene database, and their biochemical activity determined by the CIMRA assay. The assay was calibrated by regression analysis followed by symmetric cross-validation and Bayesian integration with in silico predictions of pathogenicity. CIMRA assay reproducibility was assessed in four laboratories. RESULTS: Concordance between the training runs met our prespecified validation criterion. The CIMRA assay alone correctly classified 65% of variants, with only 3% discordant classification. Bayesian integration with in silico predictions of pathogenicity increased the proportion of correctly classified variants to 87%, without changing the discordance rate. Interlaboratory results were highly reproducible. CONCLUSION: The CIMRA assay accurately predicts pathogenic and benign MMR gene variants. Quantitative combination of assay results with in silico analysis correctly classified the majority of variants. Using this calibration, CIMRA assay results can be integrated into the diagnostic algorithm for MMR gene variants.


Assuntos
Neoplasias Colorretais Hereditárias sem Polipose/genética , Reparo de Erro de Pareamento de DNA/genética , Técnicas Genéticas , Células 3T3 , Animais , Teorema de Bayes , Calibragem , Simulação por Computador , Humanos , Técnicas In Vitro , Camundongos , Proteína 1 Homóloga a MutL/genética , Proteína 2 Homóloga a MutS/genética , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
14.
Genet Med ; 20(9): 1054-1060, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29300386

RESUMO

PURPOSE: We evaluated the American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) variant pathogenicity guidelines for internal consistency and compatibility with Bayesian statistical reasoning. METHODS: The ACMG/AMP criteria were translated into a naive Bayesian classifier, assuming four levels of evidence and exponentially scaled odds of pathogenicity. We tested this framework with a range of prior probabilities and odds of pathogenicity. RESULTS: We modeled the ACMG/AMP guidelines using biologically plausible assumptions. Most ACMG/AMP combining criteria were compatible. One ACMG/AMP likely pathogenic combination was mathematically equivalent to pathogenic and one ACMG/AMP pathogenic combination was actually likely pathogenic. We modeled combinations that include evidence for and against pathogenicity, showing that our approach scored some combinations as pathogenic or likely pathogenic that ACMG/AMP would designate as variant of uncertain significance (VUS). CONCLUSION: By transforming the ACMG/AMP guidelines into a Bayesian framework, we provide a mathematical foundation for what was a qualitative heuristic. Only 2 of the 18 existing ACMG/AMP evidence combinations were mathematically inconsistent with the overall framework. Mixed combinations of pathogenic and benign evidence could yield a likely pathogenic, likely benign, or VUS result. This quantitative framework validates the approach adopted by the ACMG/AMP, provides opportunities to further refine evidence categories and combining rules, and supports efforts to automate components of variant pathogenicity assessments.


Assuntos
Teorema de Bayes , Biologia Computacional/métodos , Análise de Sequência de DNA/métodos , Testes Genéticos/normas , Variação Genética/genética , Genoma Humano , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Análise de Sequência de DNA/normas , Software
17.
Fam Cancer ; 16(1): 159-166, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27401692

RESUMO

This study explores our Familial Cancer Program's experience implementing multi-gene panel testing in a largely rural patient population. We conducted a retrospective review of patients undergoing panel testing between May 2011 and August 2015. Our goal was to evaluate factors that might be predictors of identifying variants (pathogenic or uncertain significance) and to assess clinical management changes due to testing. We utilized a structured family history tool to determine the significance of patient's family histories with respect to identification of genetic variants. A total of 227 patients underwent panel testing at our center and 67 patients (29.5 %) had variants identified, with 8 (3.5 %) having multiple variants. Overall, 44 patients (19.4 %) had a variant of uncertain significance (VUS) and 28 patients (12.3 %) had a pathogenic variant detected, with 10 (4.4 %) having pathogenic variants in highly penetrant genes. We found no statistical difference in patient familial and personal cancer history, age, rural status, Ashkenazi Jewish ancestry, insurance coverage and prior single-gene testing among those with pathogenic, VUS and negative panel testing results. There were no predictors of pathogenic variants on regression analysis. Panel testing changed cancer screening and management guidelines from that expected based on family history alone in 13.2 % of patients. Ultimately, cancer panel testing does yield critical information not identified by traditional single gene testing but maximal utility through a broad range of personal and family histories requires improved interpretation of variants.


Assuntos
Predisposição Genética para Doença , Testes Genéticos/métodos , Neoplasias/genética , Adulto , Idoso , Feminino , Humanos , Masculino , Anamnese , Pessoa de Meia-Idade , Estudos Retrospectivos , População Rural
18.
Dig Dis Sci ; 61(10): 2887-2895, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27384051

RESUMO

BACKGROUND: Strategies to screen colorectal cancers (CRCs) for Lynch syndrome are evolving rapidly; the optimal strategy remains uncertain. AIM: We compared targeted versus universal screening of CRCs for Lynch syndrome. METHODS: In 2010-2011, we employed targeted screening (age < 60 and/or Bethesda criteria). From 2012 to 2014, we screened all CRCs. Immunohistochemistry for the four mismatch repair proteins was done in all cases, followed by other diagnostic studies as indicated. We modeled the diagnostic costs of detecting Lynch syndrome and estimated the 5-year costs of preventing CRC by colonoscopy screening, using a system dynamics model. RESULTS: Using targeted screening, 51/175 (29 %) cancers fit criteria and were tested by immunohistochemistry; 15/51 (29 %, or 8.6 % of all CRCs) showed suspicious loss of ≥1 mismatch repair protein. Germline mismatch repair gene mutations were found in 4/4 cases sequenced (11 suspected cases did not have germline testing). Using universal screening, 17/292 (5.8 %) screened cancers had abnormal immunohistochemistry suspicious for Lynch syndrome. Germline mismatch repair mutations were found in only 3/10 cases sequenced (7 suspected cases did not have germline testing). The mean cost to identify Lynch syndrome probands was ~$23,333/case for targeted screening and ~$175,916/case for universal screening at our institution. Estimated costs to identify and screen probands and relatives were: targeted, $9798/case and universal, $38,452/case. CONCLUSIONS: In real-world Lynch syndrome management, incomplete clinical follow-up was the major barrier to do genetic testing. Targeted screening costs 2- to 7.5-fold less than universal and rarely misses Lynch syndrome cases. Future changes in testing costs will likely change the optimal algorithm.


Assuntos
Colonoscopia/economia , Neoplasias Colorretais Hereditárias sem Polipose/genética , Neoplasias Colorretais/genética , Testes Genéticos/economia , Imuno-Histoquímica/economia , Fatores Etários , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/economia , Neoplasias Colorretais/prevenção & controle , Neoplasias Colorretais Hereditárias sem Polipose/diagnóstico , Neoplasias Colorretais Hereditárias sem Polipose/economia , Reparo de Erro de Pareamento de DNA/genética , Proteínas de Ligação a DNA/genética , Detecção Precoce de Câncer , Mutação em Linhagem Germinativa , Custos de Cuidados de Saúde , Humanos , Programas de Rastreamento/economia , Pessoa de Meia-Idade , Endonuclease PMS2 de Reparo de Erro de Pareamento/genética , Proteína 1 Homóloga a MutL/genética , Proteína 2 Homóloga a MutS/genética , Seleção de Pacientes , Análise de Sistemas , Estados Unidos
19.
Hum Mutat ; 37(6): 564-9, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26931183

RESUMO

The consistent and unambiguous description of sequence variants is essential to report and exchange information on the analysis of a genome. In particular, DNA diagnostics critically depends on accurate and standardized description and sharing of the variants detected. The sequence variant nomenclature system proposed in 2000 by the Human Genome Variation Society has been widely adopted and has developed into an internationally accepted standard. The recommendations are currently commissioned through a Sequence Variant Description Working Group (SVD-WG) operating under the auspices of three international organizations: the Human Genome Variation Society (HGVS), the Human Variome Project (HVP), and the Human Genome Organization (HUGO). Requests for modifications and extensions go through the SVD-WG following a standard procedure including a community consultation step. Version numbers are assigned to the nomenclature system to allow users to specify the version used in their variant descriptions. Here, we present the current recommendations, HGVS version 15.11, and briefly summarize the changes that were made since the 2000 publication. Most focus has been on removing inconsistencies and tightening definitions allowing automatic data processing. An extensive version of the recommendations is available online, at http://www.HGVS.org/varnomen.


Assuntos
Variação Genética , Projeto Genoma Humano/organização & administração , Terminologia como Assunto , Genoma Humano , Guias como Assunto , Humanos , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA