Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Metabolites ; 14(3)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38535315

RESUMO

Enzyme-substrate interactions play a fundamental role in elucidating synthesis pathways and synthetic biology, as they allow for the understanding of important aspects of a reaction. Establishing the interaction experimentally is a slow and costly process, which is why this problem has been addressed using computational methods such as molecular dynamics, molecular docking, and Monte Carlo simulations. Nevertheless, this type of method tends to be computationally slow when dealing with a large search space. Therefore, in recent years, methods based on artificial intelligence, such as support vector machines, neural networks, or decision trees, have been implemented, significantly reducing the computing time and covering vast search spaces. These methods significantly reduce the computation time and cover broad search spaces, rapidly reducing the number of interacting candidates, as they allow repetitive processes to be automated and patterns to be extracted, are adaptable, and have the capacity to handle large amounts of data. This article analyzes these artificial intelligence-based approaches, presenting their common structure, advantages, disadvantages, limitations, challenges, and future perspectives.

2.
Metabolites ; 13(7)2023 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-37512495

RESUMO

Over the past decades, Colombia has suffered complex social problems related to illicit crops, including forced displacement, violence, and environmental damage, among other consequences for vulnerable populations. Considerable effort has been made in the regulation of illicit crops, predominantly Cannabis sativa, leading to advances such as the legalization of medical cannabis and its derivatives, the improvement of crops, and leaving an open window to the development of scientific knowledge to explore alternative uses. It is estimated that C. sativa can produce approximately 750 specialized secondary metabolites. Some of the most relevant due to their anticancer properties, besides cannabinoids, are monoterpenes, sesquiterpenoids, triterpenoids, essential oils, flavonoids, and phenolic compounds. However, despite the increase in scientific research on the subject, it is necessary to study the primary and secondary metabolism of the plant and to identify key pathways that explore its great metabolic potential. For this purpose, a genome-scale metabolic reconstruction of C. sativa is described and contextualized using LC-QTOF-MS metabolic data obtained from the leaf extract from plants grown in the region of Pesca-Boyaca, Colombia under greenhouse conditions at the Clever Leaves facility. A compartmentalized model with 2101 reactions and 1314 metabolites highlights pathways associated with fatty acid biosynthesis, steroids, and amino acids, along with the metabolism of purine, pyrimidine, glucose, starch, and sucrose. Key metabolites were identified through metabolomic data, such as neurine, cannabisativine, cannflavin A, palmitoleic acid, cannabinoids, geranylhydroquinone, and steroids. They were analyzed and integrated into the reconstruction, and their potential applications are discussed. Cytotoxicity assays revealed high anticancer activity against gastric adenocarcinoma (AGS), melanoma cells (A375), and lung carcinoma cells (A549), combined with negligible impact against healthy human skin cells.

3.
Biotechnol Prog ; 35(5): e2852, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31131556

RESUMO

Poultry products are one of the major transmission media of Salmonella enteritidis to humans. A promising alternative to reduce the load of Salmonella in poultry are bacteriophages. Elsewhere, a mixture of six bacteriophages has been used successfully, but large-scale production would be necessary to supply potential poultry market and costs analyses have not been calculated yet. For this, a powerful tool to predict production costs is bioprocess modeling coupled with economic analyses. This work aims to model the scaled-up production of a six bacteriophages mixture based on a laboratory/pilot-scale production using Biosolve Process. For the model construction, a combination of experimental and reported data was applied, in which different production alternatives and the range of 1-100% of the Colombian poultry market (at broiler's farm and slaughterhouse) were analyzed. Results indicate that the best cost-effective process configuration/scale is to use one bioreactor (156 L) for the six bacteriophages, then a 0.45 µm filtration for removal of biomass, and a 0.22 µm filtration for sterility; this to supply the 35% of the market size for broiler farms (equivalent to 210 million chickens). This configuration gives a production cost per chicken of US$ 0.02. Additionally, a sensitivity analysis and a theoretical contrast for understanding the impact that titer and recovery have on production scale determined that titer affects the most the cost and requires optimization. The present works serves as a first, and required, approach for the development of phage therapy products that are alternatives to present-day pathogens control strategies.


Assuntos
Bacteriófagos/metabolismo , Terapia por Fagos/economia , Salmonella enteritidis/metabolismo , Animais , Reatores Biológicos , Fermentação , Aves Domésticas
4.
Front Microbiol ; 8: 1772, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28959251

RESUMO

Malassezia species are lipophilic and lipid-dependent yeasts belonging to the human and animal microbiota. Typically, they are isolated from regions rich in sebaceous glands. They have been associated with dermatological diseases such as seborrheic dermatitis, pityriasis versicolor, atopic dermatitis, and folliculitis. The genomes of Malassezia globosa, Malassezia sympodialis, and Malassezia pachydermatis lack the genes related to fatty acid synthesis. Here, the lipid-synthesis pathways of these species, as well as of Malassezia furfur, and of an atypical M. furfur variant were reconstructed using genome data and Constraints Based Reconstruction and Analysis. To this end, the genomes of M. furfur CBS 1878 and the atypical M. furfur 4DS were sequenced and annotated. The resulting Enzyme Commission numbers and predicted reactions were similar to the other Malassezia strains despite the differences in their genome size. Proteomic profiling was utilized to validate flux distributions. Flux differences were observed in the production of steroids in M. furfur and in the metabolism of butanoate in M. pachydermatis. The predictions obtained via these metabolic reconstructions also suggested defects in the assimilation of palmitic acid in M. globosa, M. sympodialis, M. pachydermatis, and the atypical variant of M. furfur, but not in M. furfur. These predictions were validated via physiological characterization, showing the predictive power of metabolic network reconstructions to provide new clues about the metabolic versatility of Malassezia.

5.
Theor Biol Med Model ; 8: 34, 2011 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-21939518

RESUMO

BACKGROUND: In nature, bacteria often exist as biofilms. Biofilms are communities of microorganisms attached to a surface. It is clear that biofilm-grown cells harbor properties remarkably distinct from planktonic cells. Biofilms frequently complicate treatments of infections by protecting bacteria from the immune system, decreasing antibiotic efficacy and dispersing planktonic cells to distant body sites. In this work, we employed enhanced Boolean algebra to model biofilm formation. RESULTS: The network obtained describes biofilm formation successfully, assuming - in accordance with the literature - that when the negative regulators (RscCD and EnvZ/OmpR) are off, the positive regulator (FlhDC) is on. The network was modeled under three different conditions through time with satisfactory outcomes. Each cluster was constructed using the K-means/medians Clustering Support algorithm on the basis of published Affymetrix microarray gene expression data from biofilm-forming bacteria and the planktonic state over four time points for Escherichia coli K-12. CONCLUSIONS: The different phenotypes obtained demonstrate that the network model of biofilm formation can simulate the formation or repression of biofilm efficiently in E. coli K-12.


Assuntos
Biofilmes/crescimento & desenvolvimento , Escherichia coli K12/genética , Escherichia coli K12/fisiologia , Redes Reguladoras de Genes/genética , Modelos Biológicos , Técnicas de Inativação de Genes , Família Multigênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA