Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 24(11): 7134-7143, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35262146

RESUMO

Armchair graphene nanoribbons, when forming a superlattice, can be classified into different topological phases, with or without edge states. By means of tight-binding and classical molecular dynamics (MD) simulations, we studied the electronic and mechanical properties of some of these superlattices. MD shows that fracture in modulated superlattices is brittle, as for unmodulated ribbons, and occurs at the thinner regions, with staggered superlattices achieving a larger fracture strain than inline superlattices. We found a general mechanism to induce a topological transition with strain, related to the electronic properties of each segment of the superlattice, and by studying the sublattice polarization we were able to characterize the transition and the response of these states to the strain. For the cases studied in detail here, the topological transition occurred at ∼3-5% strain, well below the fracture strain. The topological states of the superlattice - if present - are robust to strain even close to fracture. The topological transition was characterized by means of the sublattice polarization of the states.

2.
Nanotechnology ; 32(4): 045709, 2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33045683

RESUMO

There are many simulation studies of mechanical properties of graphene nanoribbons (GNR), but there is a lack of agreement regarding elastic and plastic behavior. In this paper we aim to analyze mechanical properties of finite-size GNR, including elastic modulus and fracture, as a function of ribbon size. We present classical molecular dynamics simulations for three different empirical potentials which are often used for graphene simulations: AIREBO, REBO-scr and REAXFF. Ribbons with and without H-passivation at the borders are considered, and the effects of strain rate and different boundaries are also explored. We focus on zig-zag GNR, but also include some armchair GNR examples. Results are strongly dependent on the empirical potential employed. Elastic modulus under uniaxial tension can depend on ribbon size, unlike predictions from continuum-scale models and from some atomistic simulations, and fracture strain and progress vary significantly amongst the simulated potentials. Because of that, we have also carried out quasi-static ab-initio simulations for a selected size, and find that the fracture process is not sudden, instead the wave function changes from Blöch states to a strong interaction between localized waves, which decreases continuously with distance. All potentials show good agreement with DFT in the linear elastic regime, but only the REBO-scr potential shows reasonable agreement with DFT both in the nonlinear elastic and fracture regimes. This would allow more reliable simulations of GNRs and GNR-based nanostructures, to help interpreting experimental results and for future technological applications.

3.
Sci Rep ; 10(1): 21096, 2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33273535

RESUMO

Mechanical properties of nanomaterials, such as nanowires and nanotubes, are an important feature for the design of novel electromechanical nano-architectures. Since grain boundary structures and surface modifications can be used as a route to modify nanostructured materials, it is of interest to understand how they affect material strength and plasticity. We report large-scale atomistic simulations to determine the mechanical response of nickel nanowires and nanotubes subject to uniaxial compression. Our results suggest that the incorporation of nanocrystalline structure allows completely flexible deformation, in sharp contrast with single crystals. While crystalline structures at high compression are dominated by dislocation pinning and the multiplication of highly localized shear regions, in nanocrystalline systems the dislocation distribution is significantly more homogeneous. Therefore, for large compressions (large strains) coiling instead of bulging is the dominant deformation mode. Additionally, it is observed that nanotubes with only 70% of the nanowire mass but of the same diameter, exhibit similar mechanical behavior up to 0.3 strain. Our results are useful for the design of new flexible and light-weight metamaterials, when highly deformable struts are required.

4.
Phys Chem Chem Phys ; 20(24): 16347-16353, 2018 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-29683154

RESUMO

We studied the soft landing of Ni atoms on a previously damaged graphene sheet by means of molecular dynamics simulations. We found a monotonic decrease of the cluster frequency as a function of its size, but few big clusters comprise an appreciable fraction of the total number of Ni atoms. The aggregation of Ni atoms is also modeled by means of a simple phenomenological model. The results are in clear contrast with the case of hard or energetic landing of metal atoms, where there is a tendency to form mono-disperse metal clusters. This behavior is attributed to the high diffusion of unattached Ni atoms, together with vacancies acting as capture centers. The findings of this work show that a simple study of the energetics of the system is not enough in the soft landing regime, where it is unavoidable to also consider the growth process of metal clusters.

5.
Antonie Van Leeuwenhoek ; 107(1): 251-61, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25432071

RESUMO

A new wild strain of Saccharomyces cerevisiae (CF3) isolated from tequila must was evaluated for production of fructanase on Agave tequilana Weber fructan (FT). Fructanase activity (F) was assessed by a 3(3) factorial design (substrate, temperature and pH). High enzymatic activity (31.1 U/ml) was found at 30 °C, pH 5, using FT (10 g/l) as substrate. The effect of initial substrate concentration on F (FT0, 5.7-66 g/l) was studied and it was found that F was highest (44.8 U/ml) at FT0 25 g/l. A 2(2) factorial experimental design with five central points was utilized to study the effect of stirring and aeration on fructanase activity; stirring exhibited a stronger effect on F. The ratio fructanase to invertase (F/S) was 0.57, which confirms that the enzymes are fructanase. Crude fructanase reached high substrate hydrolysis (48 wt%) in 10 h. It is shown that S. cerevisiae CF3 was able to produce large amounts of fructanase by growing it on fructan from A. tequilana.


Assuntos
Agave/química , Frutanos/metabolismo , Glicosídeo Hidrolases/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/metabolismo , Agave/microbiologia , Concentração de Íons de Hidrogênio , Hidrólise , Saccharomyces cerevisiae/crescimento & desenvolvimento , Temperatura , beta-Frutofuranosidase/metabolismo
6.
Food Chem Toxicol ; 40(10): 1507-13, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12387316

RESUMO

Acetaldehyde (Ace) is a reactive compound widely found in natural and industrialized products. On the other hand, chlorophyllin (Chl) is a chloropyll derivative which has shown DNA modulatory effects in several models. The first aim of the present study was to determine the capacity of Ace to increase the rate of sister-chromatid exchanges (SCEs) in mouse bone marrow cells in vivo, as well as to determine its capacity to modify the mitotic index (MI) and the average generation time (AGT). For this experiment we tested four dosages of Ace by the i.p. route (0.4, 4.0, 40.0 and 400 mg/kg), and found a genotoxic effect with the two highest dosages (more than double the basal level was observed with 400 mg/kg). We also found that none of the doses tested modified the MI or the AGT. A second objective was to explore the potential of Chl to modulate the genotoxicity of Ace in the same model. We evaluated whether an oral administration of Chl (2.0, 6.0 and 10.0 mg/kg), given 1 h before an i.p. administration of Ace (100 mg/kg), could modulate the SCEs produced by the mutagen. The result showed a similar SCE rate in both, the Ace-treated mice and those administered with the two chemicals, indicating that Chl was not a modulatory chemical on the genotoxicity of Ace. No modifications were observed concerning the MI or the AGT either. A third objective was to determine whether the two compounds (Ace and Chl) may form a molecular complex in aqueous solution. In agreement with the lack of modulatory effect by Chl, a reversed HPLC and a spectrophotometric analysis showed that the two compounds were unable to form a complex. This report confirms the importance of the specificity concerning the interaction mutagen/antimutagen.


Assuntos
Acetaldeído/antagonistas & inibidores , Acetaldeído/toxicidade , Antimutagênicos/farmacologia , Medula Óssea/ultraestrutura , Clorofilídeos/farmacologia , Troca de Cromátide Irmã/efeitos dos fármacos , Acetaldeído/química , Animais , Divisão Celular/efeitos dos fármacos , Clorofilídeos/química , Cromatografia Líquida de Alta Pressão , Masculino , Camundongos , Índice Mitótico , Mutagênicos/toxicidade , Espectrofotometria Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA