Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bioinformatics ; 38(23): 5191-5198, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36205607

RESUMO

MOTIVATION: The term clustering designates a comprehensive family of unsupervised learning methods allowing to group similar elements into sets called clusters. Geometrical clustering of molecular dynamics (MD) trajectories is a well-established analysis to gain insights into the conformational behavior of simulated systems. However, popular variants collapse when processing relatively long trajectories because of their quadratic memory or time complexity. From the arsenal of clustering algorithms, HDBSCAN stands out as a hierarchical density-based alternative that provides robust differentiation of intimately related elements from noise data. Although a very efficient implementation of this algorithm is available for programming-skilled users (HDBSCAN*), it cannot treat long trajectories under the de facto molecular similarity metric RMSD. RESULTS: Here, we propose MDSCAN, an HDBSCAN-inspired software specifically conceived for non-programmers users to perform memory-efficient RMSD-based clustering of long MD trajectories. Methodological improvements over the original version include the encoding of trajectories as a particular class of vantage-point tree (decreasing time complexity), and a dual-heap approach to construct a quasi-minimum spanning tree (reducing memory complexity). MDSCAN was able to process a trajectory of 1 million frames using the RMSD metric in about 21 h with <8 GB of RAM, a task that would have taken a similar time but more than 32 TB of RAM with the accelerated HDBSCAN* implementation generally used. AVAILABILITY AND IMPLEMENTATION: The source code and documentation of MDSCAN are free and publicly available on GitHub (https://github.com/LQCT/MDScan.git) and as a PyPI package (https://pypi.org/project/mdscan/). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Simulação de Dinâmica Molecular , Software , Análise por Conglomerados , Algoritmos
2.
Bioinformatics ; 38(7): 1863-1869, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35020783

RESUMO

MOTIVATION: Density Peaks is a widely spread clustering algorithm that has been previously applied to Molecular Dynamics (MD) simulations. Its conception of cluster centers as elements displaying both a high density of neighbors and a large distance to other elements of high density, particularly fits the nature of a geometrical converged MD simulation. Despite its theoretical convenience, implementations of Density Peaks carry a quadratic memory complexity that only permits the analysis of relatively short trajectories. RESULTS: Here, we describe DP+, an exact novel implementation of Density Peaks that drastically reduces the RAM consumption in comparison to the scarcely available alternatives designed for MD. Based on DP+, we developed RCDPeaks, a refined variant of the original Density Peaks algorithm. Through the use of DP+, RCDPeaks was able to cluster a one-million frames trajectory using less than 4.5 GB of RAM, a task that would have taken more than 2 TB and about 3× more time with the fastest and less memory-hunger alternative currently available. Other key features of RCDPeaks include the automatic selection of parameters, the screening of center candidates and the geometrical refining of returned clusters. AVAILABILITY AND IMPLEMENTATION: The source code and documentation of RCDPeaks are free and publicly available on GitHub (https://github.com/LQCT/RCDPeaks.git). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Algoritmos , Simulação de Dinâmica Molecular , Software , Análise por Conglomerados , Documentação
3.
Bioinformatics ; 38(1): 73-79, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34398215

RESUMO

MOTIVATION: Classical Molecular Dynamics (MD) is a standard computational approach to model time-dependent processes at the atomic level. The inherent sparsity of increasingly huge generated trajectories demands clustering algorithms to reduce other post-simulation analysis complexity. The Quality Threshold (QT) variant is an appealing one from the vast number of available clustering methods. It guarantees that all members of a particular cluster will maintain a collective similarity established by a user-defined threshold. Unfortunately, its high computational cost for processing big data limits its application in the molecular simulation field. RESULTS: In this work, we propose a methodological parallel between QT clustering and another well-known algorithm in the field of Graph Theory, the Maximum Clique Problem. Molecular trajectories are represented as graphs whose nodes designate conformations, while unweighted edges indicate mutual similarity between nodes. The use of a binary-encoded RMSD matrix coupled to the exploitation of bitwise operations to extract clusters significantly contributes to reaching a very affordable algorithm compared to the few implementations of QT for MD available in the literature. Our alternative provides results in good agreement with the exact one while strictly preserving the collective similarity of clusters. AVAILABILITY AND IMPLEMENTATION: The source code and documentation of BitQT are free and publicly available on GitHub (https://github.com/LQCT/BitQT.git) and ReadTheDocs (https://bitqt.readthedocs.io/en/latest/), respectively. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Simulação de Dinâmica Molecular , Software , Algoritmos , Análise por Conglomerados , Documentação
4.
J Org Chem ; 85(4): 2426-2437, 2020 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-31922748

RESUMO

The reaction of C60 with pregnen-20-carboxaldehyde, a biologically active synthetic steroid, by using a 1,3-dipolar cycloaddition reaction (Prato's protocol) results in the formation of pyrrolidine rings bearing a new stereogenic center on the C2 of the five-membered ring. The formation of the fullerene-steroid hybrids proceeds with preference for the Re face of the 1,3-dipole, with formation of a diastereomeric mixture in 73:15 ratio. The investigation of the chiroptical properties of these conjugates allowed determining the absolute configuration of the new fulleropyrrolidines. In addition, a thorough spectroscopical study permitted to determine the structure of the two mono-cycloadducts. The electrochemical properties of the new hybrids were also evaluated by cyclic voltammetry, both systems exhibit three quasi-reversible reduction waves which are cathodically shifted in regard to the parent C60. Theoretical calculations help supporting the experimental data. A conformational study combining semiempirical methods and density functional theory has predicted the most stable diastereomer. On the basis of this agreement, a possible reaction mechanism is presented. Additionally, a molecular docking simulation has been carried out using the HIV-1 protease as receptor, thus paving the way to study the possible application of these stereoisomers in biomedicine.

5.
J Chem Inf Model ; 60(2): 467-472, 2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-31532987

RESUMO

Clustering Molecular Dynamics trajectories is a common analysis that allows grouping together similar conformations. Several algorithms have been designed and optimized to perform this routine task, and among them, Quality Threshold stands as a very attractive option. This algorithm guarantees that in retrieved clusters no pair of frames will have a similarity value greater than a specified threshold, and hence, a set of strongly correlated frames are obtained for each cluster. In this work, it is shown that various commonly used software implementations are flawed by confusing Quality Threshold with another simplistic well-known clustering algorithm published by Daura et al. (Daura, X.; van Gunsteren, W. F.; Jaun, B.; Mark, A. E.; Gademann, K.; Seebach, D. Peptide Folding: When Simulation Meets Experiment. Angew. Chemie Int. Ed. 1999, 38 (1/2), 236-240). Daura's algorithm does not impose any quality threshold for the frames contained in retrieved clusters, bringing unrelated structural configurations altogether. The advantages of using Quality Threshold whenever possible to explore Molecular Dynamic trajectories is exemplified. An in-house implementation of the original Quality Threshold algorithm has been developed in order to illustrate our comments, and its code is freely available for further use by the scientific community.


Assuntos
Simulação de Dinâmica Molecular , Algoritmos , Análise por Conglomerados , Teoria Quântica
6.
J Chem Inf Model ; 60(2): 444-448, 2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-31651166

RESUMO

The growing computational capacity allows the investigation of large biomolecular systems by increasingly extensive molecular dynamics simulations. The resulting huge trajectories demand efficient partition methods to discern relevant structural dissimilarity. Clustering algorithms are available to address this task, but their implementations still need to be improved to gain in computational speed and to reduce the consumption of random access memory. We propose the BitClust code which, based on a combination of Python and C programming languages, performs fast structural clustering of long molecular trajectories. BitClust takes advantage of bitwise operations applied to a bit-encoded pairwise similarity matrix. Our approach allowed us to process a half-million frame trajectory in 6 h using less than 35 GB, a task that is not affordable with any of the similar alternatives.


Assuntos
Algoritmos , Simulação de Dinâmica Molecular , Análise por Conglomerados , Linguagens de Programação , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA