Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 87(12): e0054621, 2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-33837013

RESUMO

The phylogenetic and functional diversities of microbial communities in tropical rainforests and how these differ from those of temperate communities remain poorly described but are directly related to the increased fluxes of greenhouse gases such as nitrous oxide (N2O) from the tropics. Toward closing these knowledge gaps, we analyzed replicated shotgun metagenomes representing distinct life zones and an elevation gradient from four locations in the Luquillo Experimental Forest (LEF), Puerto Rico. These soils had a distinct microbial community composition and lower species diversity compared to those of temperate grasslands or agricultural soils. In contrast to the overall distinct community composition, the relative abundances and nucleotide sequences of N2O reductases (nosZ) were highly similar between tropical forest and temperate soils. However, respiratory NO reductase (norB) was 2-fold more abundant in the tropical soils, which might be relatable to their greater N2O emissions. Nitrogen fixation (nifH) also showed higher relative abundance in rainforest than in temperate soils, i.e., 20% versus 0.1 to 0.3% of bacterial genomes in each soil type harbored the gene, respectively. Finally, unlike temperate soils, LEF soils showed little stratification with depth in the first 0 to 30 cm, with ∼45% of community composition differences explained solely by location. Collectively, these results advance our understanding of spatial diversity and metabolic repertoire of tropical rainforest soil communities and should facilitate future ecological studies of these ecosystems. IMPORTANCE Tropical rainforests are the largest terrestrial sinks of atmospheric CO2 and the largest natural source of N2O emissions, two greenhouse gases that are critical for the climate. The microbial communities of rainforest soils that directly or indirectly, through affecting plant growth, contribute to these fluxes remain poorly described by cultured-independent methods. To close this knowledge gap, the present study applied shotgun metagenomics to samples selected from three distinct life zones within the Puerto Rico rainforest. The results advance our understanding of microbial community diversity in rainforest soils and should facilitate future studies of natural or manipulated perturbations of these critical ecosystems.


Assuntos
Metagenoma , Ciclo do Nitrogênio , Floresta Úmida , Microbiologia do Solo , Metagenômica , Porto Rico , RNA Ribossômico 16S
2.
Biodivers Data J ; 8: e52054, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32733139

RESUMO

BACKGROUND: Springtails (Arthropoda, Hexapoda, Collembola) are small arthropods commonly found in soil, litter and other habitats all around the Globe. More than 9,000 species have been described worldwide, but knowledge about their diversity and distribution remains far from complete. Reports of springtail diversity in the Antilles are uneven, some islands are relatively well known, whereas others have not been explored at all. The fauna of Puerto Rico is reasonably well known, but many recent reports are scattered in published literature and unpublished theses. NEW INFORMATION: Here, we present a summary of all springtail species identified from the Bank of Puerto Rico, including unpublished records. As a result, we list 146 species including 43 unnamed, included in 65 genera and 17 families. Most species, 33, belong to Entomobryidae, but this possibly reflects the taxonomic expertise of specialists working in Puerto Rico rather than a real bias in the distribution of higher taxa in the islands. In addition to the new records, the database provides information on the world and local distribution of species listed. The dataset, presented here, is work in progress and will be updated as ongoing taxonomic inventories are completed.

3.
Zookeys ; 917: 1-13, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32206015

RESUMO

A new species of Furculanurida is described and illustrated. Furculanurida bistribus sp. nov. differs from other species of the genus by the presence of three eyes, three setae on the dens, and the white and purple coloration pattern. A key for identification of the world species of the genus is included.

4.
Ecology ; 99(4): 782-791, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29603190

RESUMO

Consumers can alter decomposition rates through both feces and selective feeding in many ecosystems, but these combined effects have seldom been examined in tropical ecosystems. Members of the detrital food web (litter-feeders or microbivores) should presumably have greater effects on decomposition than herbivores, members of the green food web. Using litterbag experiments within a field enclosure experiment, we determined the relative effects of common litter snails (Megalomastoma croceum) and herbivorous walking sticks (Lamponius portoricensis) on litter composition, decomposition rates, and microbes in a Puerto Rican rainforest, and whether consumer effects were altered by canopy cover presence. Although canopy presence did not alter consumers' effects, focal organisms had unexpected influences on decomposition. Decomposition was not altered by litter snails, but herbivorous walking sticks reduced leaf decomposition by about 50% through reductions in high quality litter abundance and, consequently, lower bacterial richness and abundance. This relatively unexplored but potentially important link between tropical herbivores, detritus, and litter microbes in this forest demonstrates the need to consider autotrophic influences when examining rainforest ecosystem processes.


Assuntos
Ecossistema , Herbivoria , Animais , Bactérias , Folhas de Planta , Porto Rico , Caramujos , Árvores
5.
Glob Chang Biol ; 24(1): e213-e232, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28804989

RESUMO

Tropical forests play a critical role in carbon and water cycles at a global scale. Rapid climate change is anticipated in tropical regions over the coming decades and, under a warmer and drier climate, tropical forests are likely to be net sources of carbon rather than sinks. However, our understanding of tropical forest response and feedback to climate change is very limited. Efforts to model climate change impacts on carbon fluxes in tropical forests have not reached a consensus. Here, we use the Ecosystem Demography model (ED2) to predict carbon fluxes of a Puerto Rican tropical forest under realistic climate change scenarios. We parameterized ED2 with species-specific tree physiological data using the Predictive Ecosystem Analyzer workflow and projected the fate of this ecosystem under five future climate scenarios. The model successfully captured interannual variability in the dynamics of this tropical forest. Model predictions closely followed observed values across a wide range of metrics including aboveground biomass, tree diameter growth, tree size class distributions, and leaf area index. Under a future warming and drying climate scenario, the model predicted reductions in carbon storage and tree growth, together with large shifts in forest community composition and structure. Such rapid changes in climate led the forest to transition from a sink to a source of carbon. Growth respiration and root allocation parameters were responsible for the highest fraction of predictive uncertainty in modeled biomass, highlighting the need to target these processes in future data collection. Our study is the first effort to rely on Bayesian model calibration and synthesis to elucidate the key physiological parameters that drive uncertainty in tropical forests responses to climatic change. We propose a new path forward for model-data synthesis that can substantially reduce uncertainty in our ability to model tropical forest responses to future climate.


Assuntos
Mudança Climática , Florestas , Modelos Biológicos , Clima Tropical , Teorema de Bayes , Biomassa , Carbono , Ciclo do Carbono , Folhas de Planta , Porto Rico
6.
PLoS One ; 12(7): e0180987, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28686734

RESUMO

Mountains receive a greater proportion of precipitation than other environments, and thus make a disproportionate contribution to the world's water supply. The Luquillo Mountains receive the highest rainfall on the island of Puerto Rico and serve as a critical source of water to surrounding communities. The area's role as a long-term research site has generated numerous hydrological, ecological, and geological investigations that have been included in regional and global overviews that compare tropical forests to other ecosystems. Most of the forest- and watershed-wide estimates of precipitation (and evapotranspiration, as inferred by a water balance) have assumed that precipitation increases consistently with elevation. However, in this new analysis of all known current and historical rain gages in the region, we find that similar to other mountainous islands in the trade wind latitudes, leeward (western) watersheds in the Luquillo Mountains receive lower mean annual precipitation than windward (eastern) watersheds. Previous studies in the Luquillo Mountains have therefore overestimated precipitation in leeward watersheds by up to 40%. The Icacos watershed, however, despite being located at elevations 200-400 m below the tallest peaks and to the lee of the first major orographic barrier, receives some of the highest precipitation. Such lee-side enhancement has been observed in other island mountains of similar height and width, and may be caused by several mechanisms. Thus, the long-reported discrepancy of unrealistically low rates of evapotranspiration in the Icacos watershed is likely caused by previous underestimation of precipitation, perhaps by as much as 20%. Rainfall/runoff ratios in several previous studies suggested either runoff excess or runoff deficiency in Luquillo watersheds, but this analysis suggests that in fact they are similar to other tropical watersheds. Because the Luquillo Mountains often serve as a wet tropical archetype in global assessments of basic ecohydrological processes, these revised estimates are relevant to regional and global assessments of runoff efficiency, hydrologic effects of reforestation, geomorphic processes, and climate change.


Assuntos
Conservação dos Recursos Naturais , Modelos Estatísticos , Chuva , Abastecimento de Água/estatística & dados numéricos , Água/análise , Altitude , Ecossistema , Florestas , Humanos , Hidrologia , Porto Rico , Volatilização , Vento
7.
Ambio ; 37(7-8): 577-87, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19205181

RESUMO

Forest fragmentation affects the heterogeneity of accumulated fuels by increasing the diversity of forest types and by increasing forest edges. This heterogeneity has implications in how we manage fuels, fire, and forests. Understanding the relative importance of fragmentation on woody biomass within a single climatic regime, and along climatic gradients, will improve our ability to manage forest fuels and predict fire behavior. In this study we assessed forest fuel characteristics in stands of differing moisture, i.e., dry and moist forests, structure, i.e., open canopy (typically younger) vs. closed canopy (typically older) stands, and size, i.e., small (10-14 ha), medium (33 to 60 ha), and large (100-240 ha) along a climatic gradient of boreal, temperate, and tropical forests. We measured duff, litter, fine and coarse woody debris, standing dead, and live biomass in a series of plots along a transect from outside the forest edge to the fragment interior. The goal was to determine how forest structure and fuel characteristics varied along this transect and whether this variation differed with temperature, moisture, structure, and fragment size. We found nonlinear relationships of coarse woody debris, fine woody debris, standing dead and live tree biomass with mean annual median temperature. Biomass for these variables was greatest in temperate sites. Forest floor fuels (duff and litter) had a linear relationship with temperature and biomass was greatest in boreal sites. In a five-way multivariate analysis of variance we found that temperature, moisture, and age/structure had significant effects on forest floor fuels, downed woody debris, and live tree biomass. Fragment size had an effect on forest floor fuels and live tree biomass. Distance from forest edge had significant effects for only a few subgroups sampled. With some exceptions edges were not distinguishable from interiors in terms of fuels.


Assuntos
Biomassa , Ecossistema , Árvores , Conservação dos Recursos Naturais , Incêndios , América do Norte , Porto Rico , Análise de Regressão , Clima Tropical , Madeira
8.
Ambio ; 37(7-8): 588-97, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19205182

RESUMO

In this study, we set up a wood decomposition experiment to i) quantify the percent of mass remaining, decay constant and performance strength of aspen stakes (Populus tremuloides) in dry and moist boreal (Alaska and Minnesota, USA), temperate (Washington and Idaho, USA), and tropical (Puerto Rico) forest types, and ii) determine the effects of fragmentation on wood decomposition rates as related to fragment size, forest age (and/or structure) and climate at the macro- and meso-scales. Fragment sizes represented the landscape variability within a climatic region. Overall, the mean small fragments area ranged from 10-14 ha, medium-sized fragments 33 to 60 ha, and large fragments 100-240 ha. We found that: i) aspen stakes decayed fastest in the tropical sites, and the slowest in the temperate forest fragments, ii) the percent of mass remaining was significantly greater in dry than in moist forests in boreal and temperate fragments, while the opposite was true for the tropical forest fragments, iii) no effect of fragment size on the percent of mass remaining of aspen stakes in the boreal sites, temperate dry, and tropical moist forests, and iv) no significant differences of aspen wood decay between forest edges and interior forest in boreal, temperate and tropical fragments. We conclude that: i) moisture condition is an important control over wood decomposition over broad climate gradients; and that such relationship can be non linear, and ii) the presence of a particular group of organism (termites) can significantly alter the decay rates of wood more than what might be predicted based on climatic factors alone. Biotic controls on wood decay might be more important predictors of wood decay in tropical regions, while abiotic constraints seems to be important determinants of decay in cold forested fragments.


Assuntos
Biomassa , Ecossistema , Populus , Madeira , Conservação dos Recursos Naturais , Porto Rico , Árvores , Clima Tropical , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA