Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Plants (Basel) ; 10(9)2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34579324

RESUMO

Precision agriculture has greatly benefited from advances in machine vision and image processing techniques. The use of feature descriptors and detectors allows to find distinctive keypoints in an image and the use of this approach for agronomical applications has become a widespread field of study. By combining near infrared (NIR) images, acquired with a modified Nikon D80 camera, and visible spectrum (VIS) images, acquired with a Nikon D300s, a proper crop identification could be obtained. Still, the use of different sensors brings an image matching challenge due to the difference between cameras and the possible distortions from each imaging technique. The aim of this paper is to compare the performance of several feature descriptors and detectors by comparing near infrared and visual spectral bands in rice crop images. Therefore, a group of 20 different scenes with different cameras and growth stages in a rice crop were evaluated. Thus, red, green, blue (RGB) and L, a, b (CIE L*a*b*) channels were extracted from VIS images in order to compare the matches obtained between each of them and the corresponding NIR image. The BRISK, SURF, SIFT, ORB, KAZE, and AKAZE methods were implemented, which act as descriptors and detectors. Additionally, a combination was made between the FAST algorithm for the detection of keypoints with the BRIEF, BRISK, and FREAK methods for features description. BF and FLANN matching methods were used. The algorithms were implemented in Python using OpenCV library. The green channel presented the highest number of correct matches in all methods. In turn, the method that presented the highest performance both in time and in the number of correct matches was the combination of the FAST feature detector and the BRISK descriptor.

2.
Electron. j. biotechnol ; Electron. j. biotechnol;12(2): 3-4, Apr. 2009. ilus, tab
Artigo em Inglês | LILACS | ID: lil-551364

RESUMO

Bulked segregant analysis was used to identify simple sequence repeat (SSR) markers associated with pod and kernel traits in cultivated peanut, to permit rapid selection of superior quality genotypes in the breeding program. SSR markers linked to pod and kernel traits were identified in two DNA pools (high and low), which were established using selected F2:6 recombinant individuals resulting from a cultivated cross between a runner (Tamrun OL01) and a Spanish (BSS 56) peanut. To identify quantitative trait loci (QTLs) for pod and kernel-related traits, parents were screened initially with 112 SSR primer pairs. The survey revealed 8.9 percent polymorphism between parents. Of ten SSR primer pairs distinguishing the parents, five (PM375, PM36, PM45, pPGPseq8D9, and Ah-041) were associated with differences between bulks for seed length, pod length, number of pods per plant, 100-seed weight, maturity, or oil content. Association was confirmed by analysis of segregation among 88 F2:6 individuals in the RIL population. Phenotypic means associated with markers for three traits differed by more than 40 percent, indicating the presence of QTLs with major effects for number of pods per plant, plant weight, and pod maturity. The SSR markers can be used for marker assisted selection for quality and yield improvement in peanut. To the best of our knowledge, this is the first report on the identification of SSR markers linked to pod - and kernel- related traits in cultivated peanut.


Assuntos
Arachis , Arachis/genética , Estações de Separação/análise , Frutas , Polimorfismo Genético , Repetições Minissatélites/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA