Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39185230

RESUMO

During development, inner hair cells (IHCs) in the mammalian cochlea are unresponsive to acoustic stimuli but instead exhibit spontaneous activity. During this same period, neurons originating from the medial olivocochlear complex (MOC) transiently innervate IHCs, regulating their firing pattern which is crucial for the correct development of the auditory pathway. Although the MOC-IHC is a cholinergic synapse, previous evidence indicates the widespread presence of gamma-aminobutyric acid (GABA) signaling markers, including presynaptic GABAB receptors (GABABR). In this study, we explore the source of GABA by optogenetically activating either cholinergic or GABAergic fibers. The optogenetic stimulation of MOC terminals from GAD;ChR2-eYFP and ChAT;ChR2-eYFP mice evoked synaptic currents in IHCs that were blocked by α-bungarotoxin. This suggests that GABAergic fibers release ACh and activate α9α10 nicotinic acetylcholine receptors (nAChRs). Additionally, MOC cholinergic fibers release not only ACh but also GABA, as the effect of GABA on ACh response amplitude was prevented by applying the GABAB-R blocker (CGP 36216). Using optical neurotransmitter detection and calcium imaging techniques, we examined the extent of GABAergic modulation at the single synapse level. Our findings suggest heterogeneity in GABA modulation, as only 15 out of 31 recorded synaptic sites were modulated by applying the GABABR specific antagonist, CGP (100-200 µM). In conclusion, we provide compelling evidence that GABA and ACh are co-released from at least a subset of MOC terminals. In this circuit, GABA functions as a negative feedback mechanism, locally regulating the extent of cholinergic inhibition at certain efferent-IHC synapses during an immature stage.

2.
PLoS Biol ; 21(8): e3002257, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37619212

RESUMO

Cholesterol contributes to neuronal membrane integrity, supports membrane protein clustering and function, and facilitates proper signal transduction. Extensive evidence has shown that cholesterol imbalances in the central nervous system occur in aging and in the development of neurodegenerative diseases. In this work, we characterize cholesterol homeostasis in the inner ear of young and aged mice as a new unexplored possibility for the prevention and treatment of hearing loss. Our results show that cholesterol levels in the inner ear are reduced during aging, an effect that is associated with an increased expression of the cholesterol 24-hydroxylase (CYP46A1), the main enzyme responsible for cholesterol turnover in the brain. In addition, we show that pharmacological activation of CYP46A1 with the antiretroviral drug efavirenz reduces the cholesterol content in outer hair cells (OHCs), leading to a decrease in prestin immunolabeling and resulting in an increase in the distortion product otoacoustic emissions (DPOAEs) thresholds. Moreover, dietary supplementation with phytosterols, plant sterols with structure and function similar to cholesterol, was able to rescue the effect of efavirenz administration on the auditory function. Altogether, our findings point towards the importance of cholesterol homeostasis in the inner ear as an innovative therapeutic strategy in preventing and/or delaying hearing loss.


Assuntos
Infecções por HIV , Perda Auditiva , Fitosteróis , Animais , Camundongos , Colesterol 24-Hidroxilase , Perda Auditiva/induzido quimicamente
3.
Mol Biol Evol ; 40(7)2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37247388

RESUMO

The genetic bases underlying the evolution of morphological and functional innovations of the mammalian inner ear are poorly understood. Gene regulatory regions are thought to play an important role in the evolution of form and function. To uncover crucial hearing genes whose regulatory machinery evolved specifically in mammalian lineages, we mapped accelerated noncoding elements (ANCEs) in inner ear transcription factor (TF) genes and found that PKNOX2 harbors the largest number of ANCEs within its transcriptional unit. Using reporter gene expression assays in transgenic zebrafish, we determined that four PKNOX2-ANCEs drive differential expression patterns when compared with ortholog sequences from close outgroup species. Because the functional role of PKNOX2 in cochlear hair cells has not been previously investigated, we decided to study Pknox2 null mice generated by CRISPR/Cas9 technology. We found that Pknox2-/- mice exhibit reduced distortion product otoacoustic emissions (DPOAEs) and auditory brainstem response (ABR) thresholds at high frequencies together with an increase in peak 1 amplitude, consistent with a higher number of inner hair cells (IHCs)-auditory nerve synapsis observed at the cochlear basal region. A comparative cochlear transcriptomic analysis of Pknox2-/- and Pknox2+/+ mice revealed that key auditory genes are under Pknox2 control. Hence, we report that PKNOX2 plays a critical role in cochlear sensitivity at higher frequencies and that its transcriptional regulation underwent lineage-specific evolution in mammals. Our results provide novel insights about the contribution of PKNOX2 to normal auditory function and to the evolution of high-frequency hearing in mammals.


Assuntos
Fatores de Transcrição , Peixe-Zebra , Animais , Camundongos , Cóclea/metabolismo , Audição , Mamíferos/genética , Camundongos Knockout , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
Front Synaptic Neurosci ; 13: 740368, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34658832

RESUMO

Noise-induced hearing loss has gained relevance as one of the most common forms of hearing impairment. The anatomical correlates of hearing loss, principally cell damage and/or death, are relatively well-understood histologically. However, much less is known about the physiological aspects of damaged, surviving cells. Here we addressed the functional consequences of noise exposure on the capacity of inner hair cells (IHCs) to release synaptic vesicles at synapses with spiral ganglion neurons (SGNs). Mice of either sex at postnatal day (P) 15-16 were exposed to 1-12 kHz noise at 120 dB sound pressure level (SPL), for 1 h. Exocytosis was measured by tracking changes in membrane capacitance (ΔCm) from IHCs of the apical cochlea. Upon IHC depolarization to different membrane potentials, ΔC m showed the typical bell-shaped curve that mirrors the voltage dependence of Ca2+ influx, in both exposed and unexposed cells. Surprisingly, from IHCs at 1-day after exposure (d.a.e.), we found potentiation of exocytosis at the peak of the bell-shaped curve. The increase in exocytosis was not accompanied by changes in whole-cell Ca2+ influx, suggesting a modification in coupling between Ca2+ channels and synaptic vesicles. Consistent with this notion, noise exposure also changed the Ca2+-dependence of exocytosis from linear to supralinear. Noise exposure did not cause loss of IHCs, but did result in a small reduction in the number of IHC-SGN synapses at 1-d.a.e. which recovered by 14-d.a.e. In contrast, a strong reduction in auditory brainstem response wave-I amplitude (representing synchronous firing of SGNs) and distortion product otoacoustic emissions (reflecting outer hair cell function) indicated a profound hearing loss at 1- and 14-d.a.e. To determine the role of glutamate release in the noise-induced potentiation of exocytosis, we evaluated vesicular glutamate transporter-3 (Vglut3) knock-out (KO) mice. Unlike WT, IHCs from Vglut3 KO mice showed a noise-induced reduction in ΔC m and Ca2+ influx with no change in the Ca2+-dependence of exocytosis. Together, these results indicate that traumatic noise exposure triggers changes of IHC synaptic function including a Vglut3-dependent potentiation of exocytosis.

5.
Proc Natl Acad Sci U S A ; 117(21): 11811-11819, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32393641

RESUMO

"Growing old" is the most common cause of hearing loss. Age-related hearing loss (ARHL) (presbycusis) first affects the ability to understand speech in background noise, even when auditory thresholds in quiet are normal. It has been suggested that cochlear denervation ("synaptopathy") is an early contributor to age-related auditory decline. In the present work, we characterized age-related cochlear synaptic degeneration and hair cell loss in mice with enhanced α9α10 cholinergic nicotinic receptors gating kinetics ("gain of function" nAChRs). These mediate inhibitory olivocochlear feedback through the activation of associated calcium-gated potassium channels. Cochlear function was assessed via distortion product otoacoustic emissions and auditory brainstem responses. Cochlear structure was characterized in immunolabeled organ of Corti whole mounts using confocal microscopy to quantify hair cells, auditory neurons, presynaptic ribbons, and postsynaptic glutamate receptors. Aged wild-type mice had elevated acoustic thresholds and synaptic loss. Afferent synapses were lost from inner hair cells throughout the aged cochlea, together with some loss of outer hair cells. In contrast, cochlear structure and function were preserved in aged mice with gain-of-function nAChRs that provide enhanced olivocochlear inhibition, suggesting that efferent feedback is important for long-term maintenance of inner ear function. Our work provides evidence that olivocochlear-mediated resistance to presbycusis-ARHL occurs via the α9α10 nAChR complexes on outer hair cells. Thus, enhancement of the medial olivocochlear system could be a viable strategy to prevent age-related hearing loss.


Assuntos
Envelhecimento/fisiologia , Cóclea , Células Ciliadas Auditivas Externas , Presbiacusia , Complexo Olivar Superior , Animais , Cóclea/fisiologia , Cóclea/fisiopatologia , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Retroalimentação Fisiológica/fisiologia , Células Ciliadas Auditivas Externas/citologia , Células Ciliadas Auditivas Externas/fisiologia , Camundongos , Emissões Otoacústicas Espontâneas/fisiologia , Presbiacusia/fisiopatologia , Presbiacusia/prevenção & controle , Complexo Olivar Superior/citologia , Complexo Olivar Superior/fisiologia
6.
Front Behav Neurosci ; 13: 182, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31456671

RESUMO

Exposure of developing rats to noise has shown to induce hippocampal-related behavioral alterations that were prevented after a week of housing in an enriched environment. However, neither the effect of repeated exposures nor its impact on key endogenous antioxidants had been studied yet. Thus, the aim of the present work was to reveal novel data about hippocampal oxidative state through the measurement of possible age-related differences in the levels of hippocampal thioredoxins in rats exposed to noise at different developmental ages and subjected to different schemes and housing conditions. In addition, the possibility that oxidative changes could underlie hippocampal-related behavioral changes was also analyzed. Developing male Wistar rats were exposed to noise for 2 h, either once or for 5 days. Upon weaning, some animals were transferred to an enriched cage for 1 week, whereas others were kept in standard cages. One week later, auditory and behavioral assessments, as well as measurement of hippocampal thioredoxin, were performed. Whereas no changes in the auditory function were observed, significant behavioral differences were found, that varied according to the age, scheme of exposure and housing condition. In addition, a significant increase in Trx-1 levels was found in all noise-exposed groups housed in standard cages. Housing animals in an enriched environment for 1 week was effective in preventing most of these changes. These findings suggest that animals become less susceptible to undergo behavioral alterations after repeated exposure to an environmental challenge, probably due to the ability of adaptation to an unfavorable condition. Moreover, it could be hypothesized that damage to younger individuals could be more easily prevented by a housing manipulation.

7.
Mol Biol Evol ; 36(8): 1653-1670, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31137036

RESUMO

The mammalian inner ear possesses functional and morphological innovations that contribute to its unique hearing capacities. The genetic bases underlying the evolution of this mammalian landmark are poorly understood. We propose that the emergence of morphological and functional innovations in the mammalian inner ear could have been driven by adaptive molecular evolution. In this work, we performed a meta-analysis of available inner ear gene expression data sets in order to identify genes that show signatures of adaptive evolution in the mammalian lineage. We analyzed ∼1,300 inner ear expressed genes and found that 13% show signatures of positive selection in the mammalian lineage. Several of these genes are known to play an important function in the inner ear. In addition, we identified that a significant proportion of genes showing signatures of adaptive evolution in mammals have not been previously reported to participate in inner ear development and/or physiology. We focused our analysis in two of these genes: STRIP2 and ABLIM2 by generating null mutant mice and analyzed their auditory function. We found that mice lacking Strip2 displayed a decrease in neural response amplitudes. In addition, we observed a reduction in the number of afferent synapses, suggesting a potential cochlear neuropathy. Thus, this study shows the usefulness of pursuing a high-throughput evolutionary approach followed by functional studies to track down genes that are important for inner ear function. Moreover, this approach sheds light on the genetic bases underlying the evolution of the mammalian inner ear.


Assuntos
Evolução Biológica , Proteínas do Citoesqueleto/genética , Orelha Interna/metabolismo , Proteínas com Domínio LIM/genética , Mamíferos/genética , Proteínas dos Microfilamentos/genética , Seleção Genética , Adaptação Biológica , Animais , Camundongos , Transcriptoma
8.
J Assoc Res Otolaryngol ; 10(2): 221-32, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19252947

RESUMO

Cochlear inner hair cells (IHCs) release neurotransmitter onto afferent auditory nerve fibers in response to sound stimulation. During early development, synaptic transmission is triggered by spontaneous Ca2+ spikes which are modulated by an efferent cholinergic innervation to IHCs. This synapse is inhibitory and mediated by the alpha9alpha10 nicotinic cholinergic receptor (nAChR). After the onset of hearing, large-conductance Ca2+-activated K+ channels are acquired and both the spiking activity and the efferent innervation disappear from IHCs. In this work, we studied the developmental changes in the membrane properties of cochlear IHCs from alpha10 nAChR gene (Chrna10) "knockout" mice. Electrophysiological properties of IHCs were studied by whole-cell recordings in acutely excised apical turns of the organ of Corti from developing mice. Neither the spiking activity nor the developmental functional expression of voltage-gated and/or calcium-sensitive K+ channels is altered in the absence of the alpha10 nAChR subunit. The present results show that the alpha10 nAChR subunit is not essential for the correct establishment of the intrinsic electrical properties of IHCs during development.


Assuntos
Células Ciliadas Auditivas Internas/fisiologia , Canais de Potássio Cálcio-Ativados/metabolismo , Receptores Nicotínicos/deficiência , Animais , Apamina/farmacologia , Cóclea/embriologia , Capacitância Elétrica , Audição/fisiologia , Camundongos , Técnicas de Patch-Clamp , Canais de Potássio Cálcio-Ativados/antagonistas & inibidores
9.
J Physiol ; 566(Pt 1): 103-18, 2005 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-15860528

RESUMO

Before the onset of hearing, a transient efferent innervation is found on inner hair cells (IHCs). This synapse is inhibitory and mediated by a nicotinic cholinergic receptor (nAChR) probably formed by the alpha9 and alpha10 subunits. We analysed the pharmacological and biophysical characteristics of the native nAChR using whole-cell recordings from IHCs in acutely excised apical turns of the rat organ of Corti. Nicotine did not activate but rather blocked the acetylcholine (ACh)-evoked currents with an IC50 of 1 +/- 0.1 microM. Antagonists of non-cholinergic receptors such as strychnine, bicuculline and ICS-205930 blocked ACh-evoked responses with an IC50 of 8.6 +/- 0.8 nM, 59 +/- 4 nM and 0.30 +/- 0.02 microM, respectively. The IHC nAChR was both permeable to (P(Ca)/P(Na) = 8 +/- 0.9) and modulated by external Ca2+. ACh-evoked currents were potentiated by Ca2+ up to 500 microM but were reduced by higher concentrations of this cation. Ba2+ mimicked the effects of Ca2+ whereas Mg2+ only blocked these currents. In addition, elevation of extracellular Ca2+ reduced the amplitude of spontaneous synaptic currents without affecting their time course. The receptor had an EC50 for ACh of 60.7 +/- 2.8 microM in 0.5 mM Ca2+. In the absence of Ca2+, the EC50 for ACh increased, suggesting that potentiation by Ca2+ involves changes in the apparent affinity for the agonist. These pharmacological and biophysical characteristics of the IHC nAChR closely resemble those of the recombinant alpha9alpha10 nAChR, reinforcing the hypothesis that the functional nAChR at the olivocochlear efferent-IHC synapse is composed of both the alpha9 and alpha10 subunits.


Assuntos
Potenciais de Ação/fisiologia , Vias Auditivas/fisiologia , Células Ciliadas Auditivas Internas/fisiologia , Inibição Neural/fisiologia , Plasticidade Neuronal/fisiologia , Receptores Nicotínicos/metabolismo , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Adaptação Fisiológica/fisiologia , Envelhecimento/fisiologia , Animais , Animais Recém-Nascidos , Células Ciliadas Auditivas Internas/embriologia , Homeostase/fisiologia , Técnicas In Vitro , Potenciação de Longa Duração/fisiologia , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA