Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Insects ; 11(7)2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32674400

RESUMO

Modified, agricultural landscapes are susceptible to damage by insect pests. Biological control of pests is typically successful once a control agent has established, but this depends on the agent's capacity to co-evolve with the host. Theoretical studies have shown that different levels of genetic variation between the host and the control agent will lead to rapid evolution of resistance in the host. Although this has been reported in one instance, the underlying genetics have not been studied. To address this, we measured the genetic variation in New Zealand populations of the pasture pest, Argentine stem weevil (Listronotus bonariensis), which is controlled with declining effectiveness by a parasitoid wasp, Microctonus hyperodae. We constructed a draft reference genome of the weevil, collected samples from a geographical survey of 10 sites around New Zealand, and genotyped them using a modified genotyping-by-sequencing approach. New Zealand populations of Argentine stem weevil have high levels of heterozygosity and low population structure, consistent with a large effective population size and frequent gene flow. This implies that Argentine stem weevils were able to evolve more rapidly than their biocontrol agent, which reproduces asexually. These findings show that monitoring genetic diversity in biocontrol agents and their targets is critical for long-term success of biological control.

2.
Front Plant Sci ; 7: 1091, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27507979

RESUMO

Listronotus bonariensis (Argentine stem weevil) is a stem-boring weevil that has become a major pasture pest in New Zealand, and cool climate turf grass in Australia. This species is also frequently found in native tussock grassland in New Zealand. Laboratory and field trials were established to determine the risk posed to both seedlings and established plants of three native grass species compared to what happens with a common host of this species, hybrid ryegrass (L. perenne X L. multiflorum). Adult weevil feeding damage scores were higher on Poa colensoi and Festuca novae-zelandiae than Chionochloa rigida. Oviposition was lower on P. colensoi than hybrid ryegrass, and no eggs were laid on F. novae-zelandiae. In field trials using the same four species established as spaced plants L. bonariensis laid more eggs per tiller in ryegrass in a low altitude pasture site than in ryegrass in a higher altitude site. No eggs were found on the three native grass species at the tussock sites, and only low numbers were found on other grasses at the low altitude pasture site. Despite this, numbers of adult weevils were extracted from the plants in the field trials. These may have comprised survivors of the original weevils added to the plants, together with new generation weevils that had emerged during the experiment. Irrespective, higher numbers were recovered from the tussock site plants than from those from the pasture site. It was concluded that L. bonariensis is likely to have little overall impact, but a greater impact on native grass seedling survival than on established plants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA