Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Microbiol Biotechnol ; 32(9): 1110-1119, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36039043

RESUMO

Fe-S clusters are versatile and essential cofactors that participate in multiple and fundamental biological processes. In Escherichia coli, the biogenesis of these cofactors requires either the housekeeping Isc pathway, or the stress-induced Suf pathway which plays a general role under conditions of oxidative stress or iron limitation. In the present work, the Fe-S cluster assembly Isc and Suf systems of acidophilic Bacteria and Archaea, which thrive in highly oxidative environments, were studied. This analysis revealed that acidophilic microorganisms have a complete set of genes encoding for a single system (either Suf or Isc). In acidophilic Proteobacteria and Nitrospirae, a complete set of isc genes (iscRSUAX-hscBA-fdx), but not genes coding for the Suf system, was detected. The activity of the Isc system was studied in Leptospirillum sp. CF-1 (Nitrospirae). RT-PCR experiments showed that eight candidate genes were co-transcribed and conform the isc operon in this strain. Additionally, RT-qPCR assays showed that the expression of the iscS gene was significantly up-regulated in cells exposed to oxidative stress imposed by 260 mM Fe2(SO4)3 for 1 h or iron starvation for 3 h. The activity of cysteine desulfurase (IscS) in CF-1 cell extracts was also up-regulated under such conditions. Thus, the Isc system from Leptospirillum sp. CF-1 seems to play an active role in stressful environments. These results contribute to a better understanding of the distribution and role of Fe-S cluster protein biogenesis systems in organisms that thrive in extreme environmental conditions.


Assuntos
Proteínas de Escherichia coli , Proteínas Ferro-Enxofre , Extratos Celulares , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Ferro/metabolismo , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Óperon , Enxofre/metabolismo
2.
Biol Res ; 55(1): 19, 2022 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-35525996

RESUMO

BACKGROUND: Acidophilic microorganisms like Leptospirillum sp. CF-1 thrive in environments with extremely low pH and high concentrations of dissolved heavy metals that can induce the generation of reactive oxygen species (ROS). Several hypothetical genes and proteins from Leptospirillum sp. CF-1 are known to be up-regulated under oxidative stress conditions. RESULTS: In the present work, the function of hypothetical gene ABH19_09590 from Leptospirillum sp. CF-1 was studied. Heterologous expression of this gene in Escherichia coli led to an increase in the ability to grow under oxidant conditions with 5 mM K2CrO4 or 5 mM H2O2. Similarly, a significant reduction in ROS production in E. coli transformed with a plasmid carrying ABH19_09590 was observed after exposure to these oxidative stress elicitors for 30 min, compared to a strain complemented with the empty vector. A co-transcriptional study using RT-PCR showed that ABH19_09590 is contained in an operon, here named the "och" operon, that also contains ABH19_09585, ABH19_09595 and ABH19_09600 genes. The expression of the och operon was significantly up-regulated in Leptospirillum sp. CF-1 exposed to 5 mM K2CrO4 for 15 and 30 min. Genes of this operon potentially encode a NADH:ubiquinone oxidoreductase, a CXXC motif-containing protein likely involved in thiol/disulfide exchange, a hypothetical protein, and a di-hydroxy-acid dehydratase. A comparative genomic analysis revealed that the och operon is a characteristic genetic determinant of the Leptospirillum genus that is not present in other acidophiles. CONCLUSIONS: Altogether, these results suggest that the och operon plays a protective role against chromate and hydrogen peroxide and is an important mechanism required to face polyextremophilic conditions in acid environments.


Assuntos
Cromatos , Peróxido de Hidrogênio , Bactérias/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cromatos/metabolismo , Escherichia coli , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Óperon , Estresse Oxidativo/genética , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA