Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Sci Rep ; 14(1): 1187, 2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216639

RESUMO

Chagas disease affects approximately 7 million people worldwide in Latin America and is a neglected tropical disease. Twenty to thirty percent of chronically infected patients develop chronic Chagas cardiomyopathy decades after acute infection. Identifying biomarkers of Chagas disease progression is necessary to develop better therapeutic and preventive strategies. Circulating microRNAs are increasingly reliable biomarkers of disease and therapeutic targets. To identify new circulating microRNAs for Chagas disease, we performed exploratory small RNA sequencing from the plasma of patients and performed de novo miRNA prediction, identifying potential new microRNAs. The levels of the new microRNAs temporarily named miR-Contig-1519 and miR-Contig-3244 and microRNAs that are biomarkers for nonchagasic cardiomyopathies, such as miR-148a-3p and miR-224-5p, were validated by quantitative reverse transcription. We found a specific circulating microRNA signature defined by low miR-Contig-3244, miR-Contig-1519, and miR-148a-3 levels but high miR-224-5p levels for patients with chronic Chagas disease. Finally, we predicted in silico that these altered circulating microRNAs could affect the expression of target genes involved in different cellular pathways and biological processes, which we will explore in the future.


Assuntos
Doença de Chagas , MicroRNA Circulante , Cardiopatias , MicroRNAs , Humanos , RNA-Seq , MicroRNAs/metabolismo , Biomarcadores/metabolismo , Doença Crônica , Doença de Chagas/diagnóstico , Doença de Chagas/genética
3.
Front Cell Dev Biol ; 11: 1138571, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36936692

RESUMO

Antigen cross-presentation is a vital mechanism of dendritic cells and other antigen presenting cells to orchestrate the priming of cytotoxic responses towards killing of infected or cancer cells. In this process, exogenous antigens are internalized by dendritic cells, processed, loaded onto MHC class I molecules and presented to CD8+ T cells to activate them. Sec22b is an ER-Golgi Intermediate Compartment resident SNARE protein that, in partnership with sintaxin4, coordinates the recruitment of the transporter associated with antigen processing protein and the peptide loading complex to phagosomes, where antigenic peptides that have been proteolyzed in the cytosol are loaded in MHC class I molecules and transported to the cell membrane. The silencing of Sec22b in dendritic cells primary cultures and conditionally in dendritic cells of C57BL/6 mice, critically impairs antigen cross-presentation, but neither affects other antigen presentation routes nor cytokine production and secretion. Mice with Sec22b conditionally silenced in dendritic cells (Sec22b-/-) show deficient priming of CD8+ T lymphocytes, fail to control tumor growth, and are resistant to anti-checkpoint immunotherapy. In this work, we show that Sec22b-/- mice elicit a deficient specific CD8+ T cell response when challenged with sublethal doses of Trypanosoma cruzi trypomastigotes that is associated with increased blood parasitemia and diminished survival.

4.
Microorganisms ; 9(11)2021 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-34835334

RESUMO

Chagas disease principally affects Latin-American people, but it currently has worldwide distribution due to migration. Death among those with Chagas disease can occur suddenly and without warning, even in those who may not have evidence of clinical or structural cardiac disease and who are younger than 60 years old. HCN4 channels, one of the principal elements responsible for pacemaker currents, are associated with cardiac fetal reprogramming and supraventricular and ventricular arrhythmias, but their role in chagasic arrhythmias is not clear. We found that a single-dose administration of ivabradine, which blocks HCN4, caused QTc and QRS enlargement and an increase in P-wave amplitude and was associated with ventricular and supraventricular arrhythmias in mice challenged with isoproterenol, a chronotropic/ionotropic positive agent. Continuous treatment with ivabradine did not alter the QTc interval, but P-wave morphology was deeply modified, generating supraventricular arrhythmias. In addition, we found that repolarization parameters improved with ivabradine treatment. These effects could have been caused by the high HCN4 expression observed in auricular and ventricular tissue in infected mice. Thus, we suggest, for the first time, that molecular remodeling by overexpression of HCN4 channels may be related to supraventricular arrhythmias in acute Chagas disease, causing ivabradine over-response. Thus, ivabradine treatment should be administered with caution, while HCN4 overexpression may be an indicator of heart failure and/or sudden death risk.

5.
Ann N Y Acad Sci ; 1497(1): 27-38, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33682151

RESUMO

In Chagas disease (ChD) caused by Trypanosoma cruzi, new biomarkers to predict chronic cardiac pathology are urgently needed. Previous studies in chagasic patients with mild symptomatology showed that antibodies against the immunodominant R3 epitope of sCha, a fragment of the human basic helix-loop-helix transcription factor like 5, correlated with cardiac pathology. To validate sCha as a biomarker and to understand the origin of anti-sCha antibodies, we conducted a multicenter study with several cohorts of chagasic patients with severe cardiac symptomatology. We found that levels of antibodies against sCha discriminated the high risk of sudden death, indicating they could be useful for ChD prognosis. We investigated the origin of the antibodies and performed an alanine scan of the R3 epitope. We identified a minimal epitope MRQLD, and a BLAST search retrieved several T. cruzi antigens. Five of the hits had known or putative functions, of which phosphonopyruvate decarboxylase showed the highest cross-reactivity with sCha, confirming the role of molecular mimicry in the development of anti-sCha antibodies. Altogether, we demonstrate that the development of antibodies against sCha, which originated by molecular mimicry with T. cruzi antigens, could discriminate electrocardiographic alterations associated with a high risk of sudden death.


Assuntos
Autoanticorpos/imunologia , Cardiomiopatia Chagásica/etiologia , Cardiomiopatia Chagásica/metabolismo , Doença de Chagas/complicações , Doença de Chagas/imunologia , Morte Súbita/etiologia , Epitopos Imunodominantes/imunologia , Anticorpos Antiprotozoários/imunologia , Biomarcadores , Cardiomiopatia Chagásica/diagnóstico , Doença de Chagas/parasitologia , Doença Crônica , Reações Cruzadas , Suscetibilidade a Doenças , Humanos , Trypanosoma cruzi/imunologia
6.
BMC Infect Dis ; 17(1): 221, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28327099

RESUMO

BACKGROUND: Chagas disease is caused by the protozoan Trypanosoma cruzi and is characterized by heart failure and sudden death. Identifying which factors are involved in evolution and treatment response is actually challenging. Thus, the aim of this work was to determine the Th1/Th17 (IL-6, IL-2, TNF, IL-17 and IFN-γ) and Th2 (IL-4 and IL-10) serum profile in Venezuelan Chagasic patients stratified according amiodarone treatment, hypertension and arrhythmias. METHODS: Sera from 38 chagasic patients were analyzed to determine the level of cytokines by Multiplexed Bead-Based Immunoassays. ANOVA test was applied to determine differences for each group. Additionally, a Linear Discriminant Analysis (LDA) was applied to observe the accuracy of different cytokines to discriminate between the groups. RESULTS: The levels of several cytokines were significantly higher in the high-risk of sudden death and untreated group. LDA showed that IL-2, IFN-γ and IL-10 were the best cytokines for discriminating between high-risk of sudden death and untreated patients versus low-risk of sudden death, treated and control groups. CONCLUSIONS: High IL-2 levels seem to identify patients with high-risk of sudden death and seems adequate as treatment efficacy marker. To our knowledge, this is the first report about the anti-inflammatory role of the amiodarone in Chagas disease, suggesting an inmunomodulatory effect that may be exploited as coadjutant therapy in chronic Chagas disease.


Assuntos
Arritmias Cardíacas/complicações , Doença de Chagas/sangue , Doença de Chagas/imunologia , Citocinas/sangue , Adulto , Idoso , Amiodarona/uso terapêutico , Análise de Variância , Arritmias Cardíacas/sangue , Arritmias Cardíacas/imunologia , Biomarcadores/sangue , Doença de Chagas/complicações , Citocinas/imunologia , Morte Súbita , Análise Discriminante , Feminino , Humanos , Hipertensão/sangue , Hipertensão/complicações , Hipertensão/imunologia , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Medição de Risco , Venezuela
7.
Acta Trop ; 157: 145-50, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26851167

RESUMO

Chagas disease is caused by the protozoan Trypanosoma cruzi. This is an endemic disease in the Americas, but increased migration to Europe has made it emerge in countries where it was previously unknown, being Spain the second non endemic country in number of patients. T. cruzi is a parasite with a wide genetic diversity, which has been grouped by consensus into 6 Discrete Typing Units (DTUs) affecting humans. Some authors have linked these DTUs either to a specific epidemiological context or to the different clinical presentations. Our main objective was to describe the T. cruzi DTUs identified from a population of chronically infected Latin American migrants attending a reference clinic in Madrid. 149 patients meeting this condition were selected for the study. Molecular characterization was performed by an algorithm that combines PCR of the intergenic region of the mini exon-gene, the 24Sα and 18S regions of rDNA and the variable region of the satellite DNA. A descriptive analysis was performed and associations between geographical/clinical data and the different DTUs were tested. DTUs could be determined in 105 out of 149 patients, 93.3% were from Bolivia, 67.7% were women and median age was 35 years (IQR 29-44). The most common DTU found was TcV (58; 55.2%), followed by TcIV (17; 16.2%), TcII (10; 9.5%) and TcI (4; 3.8%). TcIII and TcVI were not identified from any patient, and 15.2% patients presented mixed infections. In addition, we determined DTUs after treatment in a subset of patients. In 57% patients had different DTUs before and after treatment. DTUs distribution from this study indicates active transmission of T. cruzi is occurring in Bolivia, in both domestic and sylvatic cycles. TcIV was confirmed as a cause of chronic human disease. The current results indicate no correlation between DTU and any specific clinical presentation associated with Chagas disease, nor with geographical origin. Treatment with benznidazole does not always clear T. cruzi's genetic material from blood, and DTUs detected in the same patient may vary over time indicating that polyparasitism is frequent.


Assuntos
Doença de Chagas/etnologia , Doença de Chagas/transmissão , Migrantes/estatística & dados numéricos , Trypanosoma cruzi/genética , Adulto , Bolívia/epidemiologia , Estudos de Coortes , Coinfecção/epidemiologia , Doenças Endêmicas , Feminino , Variação Genética , Genótipo , Humanos , Masculino , Tipagem Molecular , Prevalência , Espanha/etnologia
8.
PLoS One ; 9(3): e91154, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24608170

RESUMO

BACKGROUND: Chagas disease caused by the protozoan Trypanosoma cruzi is an important public health problem in Latin America. The immunological mechanisms involved in Chagas disease pathogenesis remain incompletely elucidated. The aim of this study was to explore cytokine profiles and their possible association to the infecting DTU and the pathogenesis of Chagas disease. METHODS: 109 sero-positive T. cruzi patients and 21 negative controls from Bolivia and Colombia, were included. Flow cytometry assays for 13 cytokines were conducted on human sera. Patients were divided into two groups: in one we compared the quantification of cytokines between patients with and without chronic cardiomyopathy; in second group we compared the levels of cytokines and the genetic variability of T. cruzi. RESULTS: Significant difference in anti-inflammatory and pro-inflammatory cytokines profiles was observed between the two groups cardiac and non-cardiac. Moreover, serum levels of IFN-γ, IL-12, IL-22 and IL-10 presented an association with the genetic variability of T.cruzi, with significant differences in TcI and mixed infections TcI/TcII. CONCLUSION: Expression of anti-inflammatory and pro-inflammatory cytokines may play a relevant role in determining the clinical presentation of chronic patients with Chagas disease and suggests the occurrence of specific immune responses, probably associated to different T. cruzi DTUs.


Assuntos
Doença de Chagas/imunologia , Doença de Chagas/parasitologia , Citocinas/metabolismo , Trypanosoma cruzi/fisiologia , Adulto , Cardiomiopatia Chagásica/imunologia , Doença Crônica , Análise Discriminante , Humanos , Pessoa de Meia-Idade , Análise de Componente Principal
9.
PLoS Negl Trop Dis ; 8(1): e2633, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24392177

RESUMO

BACKGROUND: The Trypanosoma cruzi satellite DNA (satDNA) OligoC-TesT is a standardised PCR format for diagnosis of Chagas disease. The sensitivity of the test is lower for discrete typing unit (DTU) TcI than for TcII-VI and the test has not been evaluated in chronic Chagas disease patients. METHODOLOGY/PRINCIPAL FINDINGS: We developed a new prototype of the OligoC-TesT based on kinetoplast DNA (kDNA) detection. We evaluated the satDNA and kDNA OligoC-TesTs in a multi-cohort study with 187 chronic Chagas patients and 88 healthy endemic controls recruited in Argentina, Chile and Spain and 26 diseased non-endemic controls from D.R. Congo and Sudan. All specimens were tested in duplicate. The overall specificity in the controls was 99.1% (95% CI 95.2%-99.8%) for the satDNA OligoC-TesT and 97.4% (95% CI 92.6%-99.1%) for the kDNA OligoC-TesT. The overall sensitivity in the patients was 67.9% (95% CI 60.9%-74.2%) for the satDNA OligoC-TesT and 79.1% (95% CI 72.8%-84.4%) for the kDNA OligoC-Test. CONCLUSIONS/SIGNIFICANCE: Specificities of the two T. cruzi OligoC-TesT prototypes are high on non-endemic and endemic controls. Sensitivities are moderate but significantly (p = 0.0004) higher for the kDNA OligoC-TesT compared to the satDNA OligoC-TesT.


Assuntos
Doença de Chagas/diagnóstico , DNA de Cinetoplasto/genética , DNA Satélite/genética , Técnicas de Diagnóstico Molecular/métodos , Parasitologia/métodos , Trypanosoma cruzi/isolamento & purificação , Adolescente , Adulto , África , Idoso , Doença de Chagas/parasitologia , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Sensibilidade e Especificidade , América do Sul , Trypanosoma cruzi/genética , Adulto Jovem
10.
Infect Genet Evol ; 21: 440-2, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24389118

RESUMO

Chagas disease is caused by the protozoan Trypanosoma cruzi. This parasite is transmitted to humans mainly through the faeces of infected triatomine "kissing" bugs, by blood transfusions or organ donation from infected donors, and can be transmitted from mother to child. This disease is endemic in the Americas, where Bolivia has up to 28.8% prevalence in general population. Increased migration to Europe has made it emerge in countries where it was previously unknown, being Spain the second country in number of patients after the United States. T. cruzi is an organism with a rich genetic diversity, what has been grouped into six discrete typing units (DTUs). Some authors have linked these DTUs either to specific geographical distribution or to the different clinical presentations. Nevertheless little is known about its distribution in migrant populations. Our aim was to describe the T. cruzi strains isolated from a population of chronically infected Bolivian patients attending our clinic in Madrid. Thirty-three consecutive patients meeting this condition were selected for the study. Molecular characterization was performed by an algorithm that combines PCR of the intergenic region of the mini exon-gene, the 24Sα and 18S regions of rDNA and the variable region of the satellite DNA. A descriptive analysis was performed and associations between epidemiological/clinical data and the different DTUs were tested. Twenty-seven out of thirty-three patients had their DTU detected. Mean age was 36 years (IQR 31-43.3) and 23 were women (76.7%). The median time since arrival to Spain was 60 months (IQR 43-81). The most common DTU were TcV, TcIV and TcI. Four patients had cardiac involvement: 2 had TcV and 2 could not have their DTU determined. TcIII was not isolated from any patient. DTUs distribution in migrant population seems to be similar to that observed in the patients' countries of origin.


Assuntos
Doença de Chagas/etnologia , Doença de Chagas/patologia , Trypanosoma cruzi/genética , Adulto , Bolívia/epidemiologia , Doença de Chagas/epidemiologia , Estudos Transversais , DNA de Helmintos/análise , Doenças Endêmicas , Feminino , Humanos , Masculino , Tipagem Molecular , Espanha/epidemiologia , Espanha/etnologia , Migrantes/estatística & dados numéricos , Trypanosoma cruzi/classificação , Estados Unidos/epidemiologia , Estados Unidos/etnologia
11.
PLoS One ; 8(6): e65820, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23776551

RESUMO

Chagas disease, caused by the protozoan parasite Trypanosoma cruzi, affects several million people in Latin America. Myocarditis, observed during both the acute and chronic phases of the disease, is characterized by an inflammatory mononuclear cell infiltrate that includes CD4(+) T cells. It is known that Th1 cytokines help to control infection. The role that Treg and Th17 cells may play in disease outcome, however, has not been completely elucidated. We performed a comparative study of the dynamics of CD4(+) T cell subsets after infection with the T. cruzi Y strain during both the acute and chronic phases of the disease using susceptible BALB/c and non-susceptible C57BL/6 mice infected with high or low parasite inocula. During the acute phase, infected C57BL/6 mice showed high levels of CD4(+) T cell infiltration and expression of Th1 cytokines in the heart associated with the presence of Treg cells. In contrast, infected BALB/c mice had a high heart parasite burden, low heart CD4(+) T cell infiltration and low levels of Th1 and inflammatory cytokines, but with an increased presence of Th17 cells. Moreover, an increase in the expression of IL-6 in susceptible mice was associated with lethality upon infection with a high parasite load. Chronically infected BALB/c mice continued to present higher parasite burdens than C57BL/6 mice and also higher levels of IFN-γ, TNF, IL-10 and TGF-ß. Thus, the regulation of the Th1 response by Treg cells in the acute phase may play a protective role in non-susceptible mice irrespective of parasite numbers. On the other hand, Th17 cells may protect susceptible mice at low levels of infection, but could, in association with IL-6, be pathogenic at high parasite loads.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , Doença de Chagas/imunologia , Doença de Chagas/metabolismo , Citocinas/metabolismo , Trypanosoma cruzi/fisiologia , Animais , Linfócitos T CD4-Positivos/imunologia , Feminino , Citometria de Fluxo , Imunofluorescência , Interferon gama/metabolismo , Interleucina-10/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase em Tempo Real , Fator de Crescimento Transformador beta/metabolismo , Trypanosoma cruzi/imunologia
12.
PLoS Negl Trop Dis ; 7(2): e2034, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23409199

RESUMO

Trypanosoma cruzi, the causative agent of Chagas' disease, induces multiple responses in the heart, a critical organ of infection and pathology in the host. Among diverse factors, eicosanoids and the vasoactive peptide endothelin-1 (ET-1) have been implicated in the pathogenesis of chronic chagasic cardiomyopathy. In the present study, we found that T. cruzi infection in mice induces myocardial gene expression of cyclooxygenase-2 (Cox2) and thromboxane synthase (Tbxas1) as well as endothelin-1 (Edn1) and atrial natriuretic peptide (Nppa). T. cruzi infection and ET-1 cooperatively activated the Ca(2+)/calcineurin (Cn)/nuclear factor of activated T cells (NFAT) signaling pathway in atrial myocytes, leading to COX-2 protein expression and increased eicosanoid (prostaglandins E(2) and F(2α), thromboxane A(2)) release. Moreover, T. cruzi infection of ET-1-stimulated cardiomyocytes resulted in significantly enhanced production of atrial natriuretic peptide (ANP), a prognostic marker for impairment in cardiac function of chagasic patients. Our findings support an important role for the Ca(2+)/Cn/NFAT cascade in T. cruzi-mediated myocardial production of inflammatory mediators and may help define novel therapeutic targets.


Assuntos
Endotelina-1/biossíntese , Miócitos Cardíacos/imunologia , Miócitos Cardíacos/parasitologia , Trypanosoma cruzi/imunologia , Trypanosoma cruzi/patogenicidade , Animais , Fator Natriurético Atrial , Calcineurina/metabolismo , Cálcio/metabolismo , Ciclo-Oxigenase 2/biossíntese , Perfilação da Expressão Gênica , Inflamação , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Monócitos/imunologia , Monócitos/parasitologia , Fatores de Transcrição NFATC/metabolismo , Peptídeo Natriurético Tipo C/biossíntese , Precursores de Proteínas/biossíntese , Transdução de Sinais , Tromboxano-A Sintase/biossíntese
13.
J Parasitol Res ; 2012: 737324, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-21869919

RESUMO

Chagas myocarditis, which is caused by infection with the intracellular parasite Trypanosoma cruzi, remains the major infectious heart disease worldwide. Innate recognition through toll-like receptors (TLRs) on immune cells has not only been revealed to be critical for defense against T. cruzi but has also been involved in triggering the pathology. Subsequent studies revealed that this parasite activates nucleotide-binding oligomerization domain- (NOD-)like receptors and several particular transcription factors in TLR-independent manner. In addition to professional immune cells, T. cruzi infects and resides in different parenchyma cells. The innate receptors in nonimmune target tissues could also have an impact on host response. Thus, the outcome of the myocarditis or the inflamed liver relies on an intricate network of inflammatory mediators and signals given by immune and nonimmune cells. In this paper, we discuss the evidence of innate immunity to the parasite developed by the host, with emphasis on the crosstalk between immune and nonimmune cell responses.

14.
Int Immunol ; 19(12): 1395-402, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17965451

RESUMO

There is an increasing interest in the study of roles that B cells may play in regulating immune responses both in protection and in pathogenesis. However, little is known about additional immune functions of B cells independently of antibody production. In this study, we have assessed how the immunization with T-dependent antigens in different host genetic backgrounds affects several parameters of B cells during secondary immune responses. We have previously reported that BALB/c immunized with cruzipain, induced heart autoimmunity, whereas C57BL/6 mice were resistant. In a comparative study employing the same experimental model, we demonstrated that BALB/c-enriched spleen B cells presented higher ability to proliferate releasing elevated levels of IL-4. Moreover, spleen of immune BALB/c mice presented an increased number of germinal center and plasma cells as well as higher expression of B-cell activation markers (MHC class II, CD40, CD86). These findings demonstrate the influence of genetic background on B-cell activation and emphasize the importance of examining B-cell behavior in the context of the specific immunogens.


Assuntos
Subpopulações de Linfócitos B/imunologia , Cisteína Endopeptidases/imunologia , Ativação Linfocitária , Baço/imunologia , Animais , Autoimunidade , Antígeno B7-2/imunologia , Antígenos CD40/imunologia , Citocinas/imunologia , Citocinas/metabolismo , Feminino , Centro Germinativo/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Proteínas de Protozoários , Especificidade da Espécie
15.
Int J Parasitol ; 37(11): 1243-54, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17512528

RESUMO

Innate and adaptive immunity collaborate in the protection of intracellular pathogens including Trypanosoma cruzi infection. However, the parasite molecules that regulate the host immune response have not been fully identified. We previously demonstrated that the immunisation of C57BL/6 mice with cruzipain, an immunogenic T. cruzi glycoprotein, induced a strong specific T-cell response. In this study, we demonstrated that active immunisation with cruzipain was able to stimulate nitric oxide (NO) production by splenocytes. Immune cells also showed increased inducible nitric oxide synthase protein and mRNA expression. Spleen adherent cells secreted high levels of IFN-gamma and IL-12. Microbicidal activity in vitro was mainly mediated by reactive nitrogen intermediaries and IFN-gamma, as demonstrated by the inhibitory effects of NO synthase inhibitor or by IFN-gamma neutralisation. Specific T-cells were essential for NO, IFN-gamma and TNF-alpha production. Furthermore, we reported that cruzipain enhanced CD80 and major histocompatibility complex-II molecule surface expression on F4/80+ spleen cells. Interestingly, we also showed that cruzipain up-regulated toll like receptor-2 expression, not only in F4/80+ but also in total spleen cells which may be involved in the effector immune response. Our findings suggest that a single parasite antigen such as cruzipain, through adaptive immune cells and cytokines, can modulate the macrophage response not only as antigen presenting cells, but also as effector cells displaying enhanced microbicidal activity with reactive nitrogen intermediary participation. This may represent a mechanism that contributes to the immunoregulatory process during Chagas disease.


Assuntos
Doença de Chagas/prevenção & controle , Cisteína Endopeptidases/administração & dosagem , Citocinas/imunologia , Vacinas Protozoárias/administração & dosagem , Baço/imunologia , Trypanosoma cruzi/imunologia , Animais , Antígeno B7-1/imunologia , Biomarcadores/análise , Doença de Chagas/imunologia , Feminino , Citometria de Fluxo , Antígenos de Histocompatibilidade Classe II/análise , Imunofenotipagem , Interferon gama/imunologia , Interleucina-12/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/análise , Proteínas de Protozoários , Receptor 2 Toll-Like/análise , Receptor 4 Toll-Like/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA