Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nutrients ; 15(22)2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-38004105

RESUMO

AIM: To evaluate the effects of resistance exercise training (RET) and/or glutamine supplementation (GS) on signaling protein synthesis in adult rat skeletal muscles. METHODS: The following groups were studied: (1) control, no exercise (C); (2) exercise, hypertrophy resistance exercise training protocol (T); (3) no exercise, supplemented with glutamine (G); and (4) exercise and supplemented with glutamine (GT). The rats performed hypertrophic training, climbing a vertical ladder with a height of 1.1 m at an 80° incline relative to the horizontal with extra weights tied to their tails. The RET was performed three days a week for five weeks. Each training session consisted of six ladder climbs. The extra weight load was progressively increased for each animal during each training session. The G groups received daily L-glutamine by gavage (one g per kilogram of body weight per day) for five weeks. The C group received the same volume of water during the same period. The rats were euthanized, and the extensor digitorum longus (EDL) muscles from both hind limbs were removed and immediately weighed. Glutamine and glutamate concentrations were measured, and histological, signaling protein contents, and mRNA expression analyses were performed. RESULTS: Supplementation with free L-glutamine increased the glutamine concentration in the EDL muscle in the C group. The glutamate concentration was augmented in the EDL muscles from T rats. The EDL muscle mass did not change, but a significant rise was reported in the cross-sectional area (CSA) of the fibers in the three experimental groups. The levels of the phosphorylated proteins (pAkt/Akt, pp70S6K/p70S6K, p4E-BP1/4E-BP1, and pS6/S6 ratios) were significantly increased in EDL muscles of G rats, and the activation of p4E-BP1 was present in T rats. The fiber CSAs of the EDL muscles in T, G, and GT rats were increased compared to the C group. These changes were accompanied by a reduction in the 26 proteasome activity of EDL muscles from T rats. CONCLUSION: Five weeks of GS and/or RET induced muscle hypertrophy, as indicated by the increased CSAs of the EDL muscle fibers. The increase in CSA was mediated via the upregulated phosphorylation of Akt, 4E-BP1, p70S6k, and S6 in G animals and 4E-BP1 in T animals. In the EDL muscles from T animals, a decrease in proteasome activity, favoring a further increase in the CSA of the muscle fibers, was reported.


Assuntos
Glutamina , Condicionamento Físico Animal , Ratos , Animais , Glutamina/farmacologia , Glutamina/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ratos Wistar , Músculo Esquelético/metabolismo , Hipertrofia , Suplementos Nutricionais , Glutamatos/farmacologia , Condicionamento Físico Animal/fisiologia
2.
J Int Soc Sports Nutr ; 15(1): 54, 2018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30482225

RESUMO

The original article [1] contains an error whereby the author, Frederico G Romero's name is displayed incorrectly; the correct spelling is instead displayed in this Correction article.

3.
Artigo em Inglês | MEDLINE | ID: mdl-30258406

RESUMO

The reduced expression of solute carrier family 2, facilitated glucose transporter member 4 (GLUT4) and hexokinase-2 (HK2) in skeletal muscle participates in insulin resistance of diabetes mellitus (DM). MicroRNAs (miRNAs) have emerged as important modulators of mRNA/protein expression, but their role in DM is unclear. We investigated miRNAs hypothetically involved in GLUT4/HK2 expression in soleus muscle of type 1 diabetes-like rats. In silico analysis revealed 651 miRNAs predicted to regulate solute carrier family 2 member 4 (Slc2a4) mRNA, several of them also predicted to regulate Hk2 mRNA, and 16 miRNAs were selected for quantification. Diabetes reduced Slc2a4/GLUT4 and Hk2/HK2 expression (50-77%), upregulated miR-29b-3p and miR-29c-3p (50-100%), and downregulated miR-93-5p, miR-150-5p, miR-199a-5p, miR-345-3p, and miR-532-3p (~30%) expression. Besides, GLUT4 and HK2 proteins correlated (P < 0.05) negatively with miR-29b-3p and miR-29c-3p and positively with miR-199a-5p and miR-532-3p, suggesting that these miRNAs could be markers of alterations in GLUT4 and HK2 expression. Additionally, diabetes increased the nuclear factor kappa B subunit 1 protein (p50) expression, a repressor of Slc2a4, which was also predicted as a target for miR-199a-5p and miR-532-3p. Correlations were also detected between these miRNAs and blood glucose, 24-h glycosuria and plasma fructosamine, and insulin therapy reversed most of the alterations. In sum, we report that diabetes altered miR-29b-3p, miR-29c-3p, miR-199a-5p and miR-532-3p expression in muscle of male rats, where their predicted targets Slc2a4/GLUT4 and Hk2/HK2 are repressed. These data shed light on these miRNAs as a markers of impaired skeletal muscle glucose disposal, and, consequently, glycemic control in diabetes.

4.
J Physiol Sci ; 68(2): 165-174, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28083734

RESUMO

Beta-hydroxy-beta-methylbutyrate (HMB), a leucine metabolite, enhances the gain of skeletal muscle mass by increasing protein synthesis or attenuating protein degradation or both. The aims of this study were to investigate the effect of HMB on molecular factors controlling skeletal muscle protein synthesis and degradation, as well as muscle contractile function, in fed and fasted conditions. Wistar rats were supplied daily with HMB (320 mg/kg body weight diluted in NaCl-0.9%) or vehicle only (control) by gavage for 28 days. After this period, some of the animals were subjected to a 24-h fasting, while others remained in the fed condition. The EDL muscle was then removed, weighed and used to evaluate the genes and proteins involved in protein synthesis (AKT/4E-BP1/S6) and degradation (Fbxo32 and Trim63). A sub-set of rats were used to measure in vivo muscle contractile function. HMB supplementation increased AKT phosphorylation during fasting (three-fold). In the fed condition, no differences were detected in atrogenes expression between control and HMB supplemented group; however, HMB supplementation did attenuate the fasting-induced increase in their expression levels. Fasting animals receiving HMB showed improved sustained tetanic contraction times (one-fold) and an increased muscle to tibia length ratio (1.3-fold), without any cross-sectional area changes. These results suggest that HMB supplementation under fasting conditions increases AKT phosphorylation and attenuates the increased of atrogenes expression, followed by a functional improvement and gain of skeletal muscle weight, suggesting that HMB protects skeletal muscle against the deleterious effects of fasting.


Assuntos
Ligases/metabolismo , Ubiquitina/metabolismo , Valeratos/farmacologia , Animais , Proteínas de Transporte/metabolismo , Jejum/metabolismo , Leucina/metabolismo , Masculino , Contração Muscular/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Fosforilação/efeitos dos fármacos , Ratos , Ratos Wistar
5.
Mol Cell Biochem ; 427(1-2): 187-199, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28000044

RESUMO

Diabetes mellitus (DM) induces a variable degree of muscle sarcopenia, which may be related to protein degradation and to the expression of both E3 ubiquitin ligases and some specific microRNAs (miRNAs). The present study investigated the effect of diabetes and acute muscle contraction upon the TRIM63 and FBXO32 expression as well as the potential involvement of some miRNAs. Diabetes was induced by streptozotocin and studied after 30 days. Soleus muscles were harvested, stimulated to contract in vitro for twitch tension analysis (0.5 Hz), 30 min later for tetanic analysis (100 Hz), and 30 min later were frozen. TRIM63 and FBXO32 proteins were quantified by western blotting; Trim63 mRNA, Fbxo32 mRNA, miR-1-3p, miR-29a-3p, miR-29b-3p, miR-133a-3p, and miR-133b-3p were quantified by qPCR. Diabetes induced sarcopenia by decreasing (P < 0.05) muscle weight/tibia length index, maximum tetanic contraction and relaxation rates, and absolute twitch and tetanic forces (P < 0.05). Diabetes decreased (P < 0.05) the Trim63 and Fbxo32 mRNAs (30%) and respective proteins (60%), and increased (P < 0.01) the miR-29b-3p (2.5-fold). In muscle from diabetic rats, acute contractile stimulus increased TRIM63 protein, miR-1-3p, miR-29a-3p, and miR-133a/b-3p, but decreased miR-29b-3p (P < 0.05). Independent of the metabolic condition, after muscle contraction, both TRIM63 and FBXO32 proteins correlated significantly with miR-1-3p, miR-29a/b-3p, and miR-133a/b-3p. All diabetes-induced regulations were reversed by insulin treatment. Concluding, the results depict that muscle wasting in long-term insulinopenic condition may not be accompanied by increased proteolysis, pointing out the protein synthesis as an important modulator of muscle sarcopenia in DM.


Assuntos
Complicações do Diabetes/metabolismo , Diabetes Mellitus Experimental/metabolismo , Regulação da Expressão Gênica , MicroRNAs/metabolismo , Proteínas Musculares/biossíntese , Proteínas Ligases SKP Culina F-Box/biossíntese , Sarcopenia/metabolismo , Proteínas com Motivo Tripartido/biossíntese , Ubiquitina-Proteína Ligases/biossíntese , Animais , Complicações do Diabetes/patologia , Diabetes Mellitus Experimental/patologia , Masculino , Ratos , Ratos Wistar , Sarcopenia/patologia
6.
Eur J Appl Physiol ; 112(11): 3905-11, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22415102

RESUMO

The effect of short-term creatine (Cr) supplementation upon content of skeletal muscle-derived-reactive oxygen species (ROS) was investigated. Wistar rats were supplemented with Cr (5 g/kg BW) or vehicle, by gavage, for 6 days. Soleus and extensor digitorum longus (EDL) muscles were removed and incubated for evaluation of ROS content using Amplex-UltraRed reagent. The analysis of expression and activity of antioxidant enzymes (superoxide dismutase 1 and 2, catalase and glutathione peroxidase) were performed. Direct scavenger action of Cr on superoxide radical and hydrogen peroxide was also investigated. Short-term Cr supplementation attenuated ROS content in both soleus and EDL muscles (by 41 and 33.7%, respectively). Cr supplementation did not change expression and activity of antioxidant enzymes. Basal TBARS content was not altered by Cr supplementation. In cell-free experiments, Cr showed a scavenger effect on superoxide radical in concentrations of 20 and 40 mM, but not on hydrogen peroxide. These results indicate that Cr supplementation decreases ROS content in skeletal muscle possibly due to a direct action of Cr molecule on superoxide radical.


Assuntos
Antioxidantes/metabolismo , Creatina/administração & dosagem , Músculo Esquelético/enzimologia , Músculo Esquelético/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Creatina/farmacologia , Masculino , Ratos , Ratos Wistar , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1
7.
Eur J Appl Physiol ; 112(7): 2531-7, 2012 07.
Artigo em Inglês | MEDLINE | ID: mdl-22075640

RESUMO

Beta-hydroxy-beta-methylbutyrate (HMB) is a metabolite derived from leucine. The anti-catabolic effect of HMB is well documented but its effect upon skeletal muscle strength and fatigue is still uncertain. In the present study, male Wistar rats were supplemented with HMB (320 mg/kg per day) for 4 weeks. Placebo group received saline solution only. Muscle strength (twitch and tetanic force) and resistance to acute muscle fatigue of the gastrocnemius muscle were evaluated by direct electrical stimulation of the sciatic nerve. The content of ATP and glycogen in red and white portions of gastrocnemius muscle were also evaluated. The effect of HMB on citrate synthase (CS) activity was also investigated. Muscle tetanic force was increased by HMB supplementation. No change was observed in time to peak of contraction and relaxation time. Resistance to acute muscle fatigue during intense contractile activity was also improved after HMB supplementation. Glycogen content was increased in both white (by fivefold) and red (by fourfold) portions of gastrocnemius muscle. HMB supplementation also increased the ATP content in red (by twofold) and white (1.2-fold) portions of gastrocnemius muscle. CS activity was increased by twofold in red portion of gastrocnemius muscle. These results support the proposition that HMB supplementation have marked change in oxidative metabolism improving muscle strength generation and performance during intense contractions.


Assuntos
Trifosfato de Adenosina/metabolismo , Suplementos Nutricionais , Glicogênio/metabolismo , Fadiga Muscular/fisiologia , Força Muscular/fisiologia , Valeratos/administração & dosagem , Administração Oral , Animais , Masculino , Taxa de Depuração Metabólica/efeitos dos fármacos , Fadiga Muscular/efeitos dos fármacos , Força Muscular/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Ratos Wistar
8.
Amino Acids ; 40(4): 1015-25, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20607321

RESUMO

Amino acids such as leucine and its metabolite α-ketoisocaproate (KIC), are returning to be the focus of studies, mainly because of their anti-catabolic properties, through inhibition of muscle proteolysis and enhancement of protein synthesis. It is clear that these effects may counteract catabolic conditions, as well as enhance skeletal muscle mass and strength in athletes. Moreover, beta-hydroxy-beta-methylbutyrate (HMB) has been shown to produce an important effect in reducing muscle damage induced by mechanical stimuli of skeletal muscle. This review aims to describe the general scientific evidence of KIC and HMB supplementation clinical relevance, as well as their effects (e.g., increases in skeletal muscle mass and/or strength), associated with resistance training or other sports. Moreover, the possible mechanisms of cell signaling regulation leading to increases and/or sparing (during catabolic conditions) of skeletal muscle mass are discussed in detail based on the recent literature.


Assuntos
Cetoácidos/administração & dosagem , Leucina/administração & dosagem , Força Muscular/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Valeratos/administração & dosagem , Administração Oral , Adulto , Desempenho Atlético , Composição Corporal , Suplementos Nutricionais , Humanos , Cetoácidos/metabolismo , Leucina/metabolismo , Masculino , Força Muscular/fisiologia , Músculo Esquelético/fisiologia , Treinamento Resistido , Transdução de Sinais/efeitos dos fármacos , Valeratos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA