Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Conserv Biol ; 34(5): 1221-1228, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32017194

RESUMO

The loss of forest is a leading cause of species extinction, and reforestation is 1 of 2 established interventions for reversing this loss. However, the role of reforestation for biodiversity conservation remains debated, and lacking is an assessment of the potential contribution that reforestation could make to biodiversity conservation globally. We conducted a spatial analysis of overlap between 1,550 forest-obligate threatened species' ranges and land that could be reforested after accounting for socioeconomic and ecological constraints. Reforestation on at least 43% (∼369 million ha) of reforestable area was predicted to potentially benefit threatened vertebrates. This is approximately 15% of the total area where threatened vertebrates occur. The greatest opportunities for conserving threatened vertebrate species are in the tropics, particularly Brazil and Indonesia. Although reforestation is not a substitute for forest conservation, and most of the area containing threatened vertebrates remains forested, our results highlight the need for global conservation strategies to recognize the potentially significant contribution that reforestation could make to biodiversity conservation. If implemented, reforestation of ∼369 million ha would also contribute substantially to climate-change mitigation, offering a way to achieve multiple sustainability commitments at once. Countries must now work to overcome key barriers (e.g., unclear revenue streams, high transaction costs) to investment in reforestation.


Reforestación Mundial y Conservación de la Biodiversidad Resumen La pérdida de los bosques es una de las causas principales de la extinción de especies y la reforestación es una de las dos intervenciones establecidas para revertir esta pérdida. Sin embargo, el papel de la reforestación en la conservación de la biodiversidad todavía se debate, además de que hay una falta de evaluación de la contribución potencial que podría dar la reforestación a la conservación mundial de la biodiversidad. Realizamos un análisis espacial del traslape de la distribución de 1,550 especies obligadas de bosque que se encuentran amenazadas y el suelo que podría utilizarse para reforestar después de considerar las restricciones socioeconómicas y ecológicas. El análisis predijo que la reforestación en al menos el 43% (∼ 369 millones de ha) del área que se puede reforestar beneficiará potencialmente a los vertebrados amenazados. Esto es aproximadamente el 15% del área total en donde están presentes los vertebrados amenazados. Las oportunidades más grandes para conservar a las especies amenazadas de vertebrados se encuentran en los trópicos, particularmente en Brasil y en Indonesia. Aunque la reforestación no es un sustituto para la conservación de los bosques, y aunque la mayoría del área que contiene vertebrados amenazados todavía tiene flora original, nuestros resultados resaltan la necesidad de tener estrategias mundiales de conservación para reconocer la contribución potencialmente significativa que podría dar la reforestación a la conservación de la biodiversidad. Si se implementa, la reforestación de ∼369 millones de ha también contribuiría significativamente a la mitigación del cambio climático, ofreciendo así una manera de cumplir varios compromisos de sustentabilidad a la vez. Los países ahora deben trabajar para sobreponerse a las barreras importantes (p. ej.: flujos inciertos de ingresos, costos elevados de las transacciones) que enfrentan las inversiones para la reforestación.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Animais , Brasil , Florestas , Indonésia
2.
Science ; 358(6361): 313-314, 2017 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-29051370
3.
Ecol Appl ; 22(2): 597-605, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22611857

RESUMO

Changes in human behavior are a precursor to measurable impacts of no-take marine reserves. We investigated changes in recreational fishing site selection in response to the 2005 announcement of enforcement in a marine reserve in the Gulf of California, Mexico. We used a novel data set of daily self-reported boating destinations from emergency rescue logbooks for a recreational angling community from 2000 to 2008. Because the reserve system has no experimental control, we modeled the data two ways to test for robustness to model specification. We tested for changes in human fishing behavior with regression and fit a fleet-level discrete choice model to project a. counterfactual scenario. The counterfactual is the statistically constructed ex post expectation of the human behavior we would have observed if the reserve never existed. We included month and year fixed effects in our models to account for seasonal and interannual fluctuations in fishing behavior and catch rates. We detected a decrease in reserve use compared to the counterfactual, indicating that the reserve rapidly experienced a decrease in visitation. However, the reserve's effect to reduce trips diminished with time. These results indicate that the reserve is unlikely to meet its ecological goals without institutional changes that enhance compliance. This illustrates the value of human use data to understanding the processes underlying marine reserve function. We suggest that managers should consider human use with the same frequency, rigor, and tools as they do fishery stocks. Marine reserves directly affect people, and understanding human behavioral responses to marine reserves is an important step in marine reserve management.


Assuntos
Conservação dos Recursos Naturais/métodos , Monitoramento Ambiental/métodos , Pesqueiros , Recreação , Animais , Humanos , México , Oceanos e Mares , Fatores de Tempo
4.
PLoS One ; 6(12): e28400, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22163013

RESUMO

There is growing interest in systematic establishment of marine protected area (MPA) networks and representative conservation sites. This movement toward networks of no-take zones requires that reserves are deliberately and adequately spaced for connectivity. Here, we test the network functionality of an ecoregional assessment configuration of marine conservation areas by evaluating the habitat protection and connectivity offered to wide-ranging fauna in the Gulf of California (GOC, Mexico). We first use expert opinion to identify representative species of wide-ranging fauna of the GOC. These include leopard grouper, hammerhead sharks, California brown pelicans and green sea turtles. Analyzing habitat models with both structural and functional connectivity indexes, our results indicate that the configuration includes large proportions of biologically important habitat for the four species considered (25-40%), particularly, the best quality habitats (46-57%). Our results also show that connectivity levels offered by the conservation area design for these four species may be similar to connectivity levels offered by the entire Gulf of California, thus indicating that connectivity offered by the areas may resemble natural connectivity. The selected focal species comprise different life histories among marine or marine-related vertebrates and are associated with those habitats holding the most biodiversity values (i.e. coastal habitats); our results thus suggest that the proposed configuration may function as a network for connectivity and may adequately represent the marine megafauna in the GOC, including the potential connectivity among habitat patches. This work highlights the range of approaches that can be used to quantify habitat protection and connectivity for wide-ranging marine species in marine reserve networks.


Assuntos
Conservação dos Recursos Naturais , Ecologia , Animais , Biodiversidade , Conservação dos Recursos Naturais/métodos , Ecossistema , Pesqueiros , Peixes , Geografia , Biologia Marinha/métodos , México , Modelos Biológicos , Dinâmica Populacional , Especificidade da Espécie
5.
Ecol Appl ; 20(3): 783-8, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20437963

RESUMO

Conservation practitioners use demographic population viability analysis (PVA) to understand long-term effects of changing demographic rates on population growth rate. Sensitivities and elasticities of stage-specific survival and fertility rates provide managers with guidelines on the relative contributions of various life-history stages to long-term population growth. However, short-term patterns, especially single-year effects, of elasticity may be dramatically different from long-term effects, calling for caution in implementing management policies focusing entirely on only long- or short-term elasticities. Here we illustrate the temporal and spatial variation in elasticity patterns for four populations of California sea lions. Short-term stochastic elasticities were significantly different from long-term elasticities, and spatial patterns of short- and long-term elasticities varied across sites. These differences may be explained by transient effects in age structure and deviations from the stable age distribution, as well as environmental variation. Our results suggest that conservation practitioners should consider calculations of both short-and long-term elasticity in viability analyses that are used to guide management and should use caution in generalizing elasticity patterns across populations.


Assuntos
Leões-Marinhos , Animais , Meio Ambiente , México , Modelos Biológicos , Crescimento Demográfico
6.
Ecol Appl ; 18(5): 1287-96, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18686587

RESUMO

A pressing need exists to develop new approaches for obtaining information on demographic rates without causing further threats to imperiled animal populations. In this paper, we illustrate and apply a data-fitting technique based on quadratic programming that uses stage-specific abundance data to estimate demographic rates and asymptotic population growth rates (lambda). We used data from seven breeding colonies of California sea lions (Zalophus californianus) in the Gulf of California, Mexico. Estimates of lambda were similar to those from previous studies relying on a diffusion approximation using trends in total abundance. On average, predicted abundances were within 24% of the observed value for the inverse estimation method and within 29% of the observed value for the diffusion approximation. Our results suggest that three of the seven populations are declining (lambda < 1), but as many as six may be at risk. Elasticity and sensitivity analyses suggest that population management in most sites should focus on the protection of adults, whose survival generally contributes the most to lambda. The quadratic programming approach is a promising noninvasive technique for estimating demographic rates and assessing the viability of populations of imperiled species.


Assuntos
Leões-Marinhos , Animais , México , Densidade Demográfica , Sensibilidade e Especificidade
7.
Conserv Biol ; 22(3): 701-10, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18410402

RESUMO

Commercial and subsistence fisheries pressure is increasing in the Gulf of California, Mexico. One consequence often associated with high levels of fishing pressure is an increase in bycatch of marine mammals and birds. Fisheries bycatch has contributed to declines in several pinniped species and may be affecting the California sea lion (Zalophus californianus) population in the Gulf of California. We used data on fisheries and sea lion entanglement in gill nets to estimate current fishing pressure and fishing rates under which viable sea lion populations could be sustained at 11 breeding sites in the Gulf of California. We used 3 models to estimate sustainable bycatch rates: a simple population-growth model, a demographic model, and an estimate of the potential biological removal. All models were based on life history and census data collected for sea lions in the Gulf of California. We estimated the current level of fishing pressure and the acceptable level of fishing required to maintain viable sea lion populations as the number of fishing days (1 fisher/boat setting and retrieving 1 day's worth of nets) per year. Estimates of current fishing pressure ranged from 101 (0-405) fishing days around the Los Machos breeding site to 1887 (842-3140) around the Los Islotes rookery. To maintain viable sea lion populations at each site, the current level of fishing permissible could be augmented at some sites and should be reduced at other sites. For example, the area around San Esteban could support up to 1428 (935-2337) additional fishing days, whereas fishing around Lobos should be reduced by at least 165 days (107-268). Our results provide conservation practitioners with site-specific guidelines for maintaining sustainable sea lion populations and provide a method to estimate fishing pressure and sustainable bycatch rates that could be used for other marine mammals and birds.


Assuntos
Conservação dos Recursos Naturais , Leões-Marinhos/fisiologia , Animais , Ecossistema , Pesqueiros , México , Modelos Biológicos , Dinâmica Populacional , Reprodução
8.
Conserv Biol ; 21(2): 447-54, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17391194

RESUMO

Marine protected areas (MPAs) that allow some degree of artisanal fishing have been proposed to control the overexploitation of marine resources while allowing extraction by local communities. Nevertheless, the management of MPAs is often impaired by the absence of data on the status of their resources. We devised a method to estimate population growth rates with the type of data that are usually available for reef fishes. We used 7 years of spatially explicit abundance data on the leopard grouper (Mycteroperca rosacea) in an MPA in the Gulf of California, Mexico, to construct a matrix population model that incorporated the effects of El Niño/La Niña Southern Oscillation on population dynamics. An environmental model that estimated different demographic estimates for El Niño and La Niña periods performed better than a single-environment model, and a single-habitat model performed better than a model that considered different depths as different habitats. Our results suggest that the population of the leopard grouper off the main island of the MPA is not viable under present conditions. Although the impact of fishing on leopard grouper populations in the MPA has not yet been established, fishing should be closed as a precautionary measure at this island if a priority of the MPA is to ensure the sustainability of its fish populations.


Assuntos
Conservação dos Recursos Naturais/métodos , Demografia , Meio Ambiente , Peixes/fisiologia , Modelos Teóricos , Animais , México , Oceanos e Mares , Dinâmica Populacional , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA