RESUMO
The COVID-19 pandemic has enforced social isolation in many countries worldwide, which forced teachers at all levels of education, including the university context, to adapt new teaching strategies. This study presents a method developed in this regard, that is, serious games were used as a complement to synchronous online classes to ensure the continuity of pedagogical activities in a physiology course at Universidad Andrés Bello, Chile. Using serious games is a strategy in the field of gamification, which is a commonly used learning strategy for online teaching as necessitated by COVID-19. This study is quantitative in nature and conducted a questionnaire survey on 108 second-year undergraduate nursing students to determine their perception about this innovation. The results demonstrate that the students well valued the proposed pedagogical innovative model in terms of motivation and engagement. Moreover, they reported that the model can serve as a meaningful learning experience. These perceptions suggest that the model is an efficient strategy for implementing the physiology curricula in the context of online teaching. Moreover, the results imply that the model should be applied to other courses and disciplines in the undergraduate program and provide support that it is a valid strategy for face-to-face teaching. Lastly, the finding points to the potential of the model to be explored as a learning strategy in the age of education post-COVID-19.
RESUMO
BACKGROUND: Adult hypothyroidism is a highly prevalent condition that impairs processes, such as learning and memory. Even though tetra-iodothyronine (T(4)) treatment can overcome the hypothyroidism in the majority of cases, it cannot fully recover the patient's learning capacity and memory. In this work, we analyzed the cellular and molecular changes in the adult brain occurring with the development of experimental hypothyroidism. METHODS: Adult male Sprague-Dawley rats were treated with 6-propyl-2-thiouracil (PTU) for 20 days to induce hypothyroidism. Neuronal and astrocyte apoptosis were analyzed in the hippocampus of control and hypothyroid adult rats by confocal microscopy. The content of brain-derived neurotrophic factor (BDNF) was analyzed using enzyme-linked immunosorbent assay (ELISA) and in situ hybridization. The glutamatergic synapse and the postsynaptic density (PSD) were analyzed by electron microscopy. The content of PSD proteins like tyrosine receptor kinase B (TrkB), p75, and N-methyl-D-aspartate receptor (NMDAr) were analyzed by immunoblot. RESULTS: We observed that the hippocampus of hypothyroid adult rats displayed increased apoptosis levels in neurons and astrocyte and reactive gliosis compared with controls. Moreover, we found that the amount of BDNF mRNA was higher in the hippocampus of hypothyroid rats and the content of TrkB, the receptor for BDNF, was reduced at the PSD of the CA3 region of hypothyroid rats, compared with controls. We also observed that the glutamatergic synapses from the stratum radiatum of CA3 from hypothyroid rats, contained thinner PSDs than control rats. This observation was in agreement with a reduced content of NMDAr subunits at the PSD in hypothyroid animals. CONCLUSIONS: Our data suggest that adult hypothyroidism affects the hippocampus by a mechanism that alters the composition of PSD, reduces neuronal and astrocyte survival, and alters the content of the signaling neurotrophic factors, such as BDNF.