Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Toxins (Basel) ; 15(4)2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-37104207

RESUMO

Research into various proteins capable of blocking metabolic pathways has improved the detection and treatment of multiple pathologies associated with the malfunction and overexpression of different metabolites. However, antigen-binding proteins have limitations. To overcome the disadvantages of the available antigen-binding proteins, the present investigation aims to provide chimeric antigen-binding peptides by binding a complementarity-determining region 3 (CDR3) of variable domains of new antigen receptors (VNARs) with a conotoxin. Six non-natural antibodies (NoNaBodies) were obtained from the complexes of conotoxin cal14.1a with six CDR3s from the VNARs of Heterodontus francisci and two NoNaBodies from the VNARs of other shark species. The peptides cal_P98Y vs. vascular endothelial growth factor 165 (VEGF165), cal_T10 vs. transforming growth factor beta (TGF-ß), and cal_CV043 vs. carcinoembryonic antigen (CEA) showed in-silico and in vitro recognition capacity. Likewise, cal_P98Y and cal_CV043 demonstrated the capacity to neutralize the antigens for which they were designed.


Assuntos
Conotoxinas , Gastrópodes , Tubarões , Animais , Fator A de Crescimento do Endotélio Vascular , Anticorpos , Antígenos , Peptídeos , Proteínas de Transporte
2.
Int J Mol Sci ; 23(20)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36293124

RESUMO

Severe Acute Respiratory Syndrome Coronavirus 2 is the causal pathogen of coronavirus disease 2019 (COVID-19). The emergence of new variants with different mutational patterns has limited the therapeutic options available and complicated the development of effective neutralizing antibodies targeting the spike (S) protein. Variable New Antigen Receptors (VNARs) constitute a neutralizing antibody technology that has been introduced into the list of possible therapeutic options against SARS-CoV-2. The unique qualities of VNARs, such as high affinities for target molecules, capacity for paratope reformatting, and relatively high stability, make them attractive molecules to counteract the emerging SARS-CoV-2 variants. In this study, we characterized a VNAR antibody (SP240) that was isolated from a synthetic phage library of VNAR domains. In the phage display, a plasma with high antibody titers against SARS-CoV-2 was used to selectively displace the VNAR antibodies bound to the antigen SARS-CoV-2 receptor binding domain (RBD). In silico data suggested that the SP240 binding epitopes are located within the ACE2 binding interface. The neutralizing ability of SP240 was tested against live Delta and Omicron SARS-CoV-2 variants and was found to clear the infection of both variants in the lung cell line A549-ACE2-TMPRSS2. This study highlights the potential of VNARs to act as neutralizing antibodies against emerging SARS-CoV-2 variants.


Assuntos
COVID-19 , Anticorpos de Domínio Único , Humanos , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/química , Enzima de Conversão de Angiotensina 2/genética , Testes de Neutralização , Anticorpos Antivirais , Anticorpos Neutralizantes , Epitopos
3.
PLoS One ; 17(6): e0269032, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35749390

RESUMO

The coordinated efforts to stop the spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) include massive immunization of the population at a global scale. The humoral immunity against COVID-19 is conferred by neutralizing antibodies (NAbs) that occur during the post-infection period and upon vaccination. Here, we provide robust data showing that potent neutralizing antibodies are induced in convalescent patients of SARS-CoV-2 infection who have been immunized with different types of vaccines, and patients with no previous history of COVID-19 immunized with a mixed vaccination schedule regardless of the previous infection. More importantly, we showed that a heterologous prime-boost in individuals with Ad5-nCoV (Cansino) vaccine induces higher NAbs levels in comparison to a single vaccination scheme alone.


Assuntos
COVID-19 , Vacinas Virais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Humanos , Imunização Secundária , México , RNA Viral , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Vacinação
4.
Methods Mol Biol ; 2446: 71-93, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35157269

RESUMO

The shark-derived autonomous variable antibody domains known as VNARs are attractive tools for therapeutic and diagnostic applications due to their favorable properties like small size (approximately 12 kDa), high thermal and chemical stability, and good tissue penetration. Currently, different techniques have been reported to generate VNAR domains against targets of therapeutic interest. Here, we describe methods for the preparation of an immune VNAR library based on bacteriophage display, and for the preparation of a synthetic library of VNAR domains using a modified protocol based on Kunkel mutagenesis. Finally, we describe procedures for in silico maturation of a VNAR using a bioinformatic approach to obtain higher affinity binders.


Assuntos
Técnicas de Visualização da Superfície Celular , Tubarões , Animais , Biblioteca Gênica , Biblioteca de Peptídeos , Tubarões/genética
5.
Mar Pollut Bull ; 173(Pt B): 113116, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34768193

RESUMO

This study quantified the distribution of Vibrio spp. by qPCR and pathogenic vibrio species by metagenomics, during 2 oceanographic cruises-XIXIMI-04 and XIXIMI-05 -in the southern Gulf of Mexico (GoMex). A total of 708 samples from various levels of the water column and 22 sediment samples were analyzed, according to a designed net of sampling lines. Sampling was focused on reported water masses with distinctive characteristics, to detect the presence-absence of vibrios. The results indicated that the genus Vibrio was detected along the entire water column and in sediments. Pathogenic vibrios, such as V, campbellii, V. parahaemolyticus, V. vulnificus or V. cholerae were also detected in the water column and in sediments, in both oceanographic cruises. Thus, the ecological conditions of the GoMex permit the growth of Vibrio spp. in deep water environments of the GoMex, despite continuous oil input from natural and anthropogenic sources.


Assuntos
Vibrio cholerae , Vibrio parahaemolyticus , Vibrio , Golfo do México , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA