Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 9: e11135, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33828924

RESUMO

Vascular wilt, caused by the pathogen Fusarium oxysporum f. sp. physali (Foph), is a major disease of cape gooseberry (Physalis peruviana L.) in Andean countries. Despite the economic losses caused by this disease, there are few studies related to molecular mechanisms in the P. peruviana-Foph pathosystem as a useful tool for crop improvement. This study evaluates eight candidate genes associated with this pathosystem, using real-time quantitative PCR (RT-qPCR). The genes were identified and selected from 1,653 differentially expressed genes (DEGs) derived from RNA-Seq analysis and from a previous genome-wide association study (GWAS) of this plant-pathogen interaction. Based on the RT-qPCR analysis, the tubuline (TUB) reference gene was selected for its highly stable expression in cape gooseberry. The RT-qPCR validation of the candidate genes revealed the biological variation in their expression according to their known biological function. Three genes related to the first line of resistance/defense responses were highly expressed earlier during infection in a susceptible genotype, while three others were overexpressed later, mostly in the tolerant genotype. These genes are mainly involved in signaling pathways after pathogen recognition, mediated by hormones such as ethylene and salicylic acid. This study provided the first insight to uncover the molecular mechanism from the P. peruviana-Foph pathosystem. The genes validated here have important implications in the disease progress and allow a better understanding of the defense response in cape gooseberry at the molecular level. Derived molecular markers from these genes could facilitate the identification of tolerant/susceptible genotypes for use in breeding schemes.

2.
PLoS One ; 15(8): e0238383, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32845934

RESUMO

A robust Genotyping-By-Sequencing (GBS) pipeline platform was examined to provide accurate discovery of Single Nucleotide Polymorphisms (SNPs) in a cape gooseberry (Physalis peruviana L.) and related taxa germplasm collection. A total of 176 accessions representing, wild, weedy, and commercial cultivars as well as related taxa from the Colombian germplasm bank and other world repositories were screened using GBS. The pipeline parameters mnLCov of 0.5 and a mnScov of 0.7, tomato and potato genomes, and cape gooseberry transcriptome for read alignments, were selected to better assess diversity and population structure in cape gooseberry and related taxa. A total of 7,425 SNPs, derived from P. peruviana common tags (unique 64 bp sequences shared between selected species), were used. Within P. peruviana, five subpopulations with a high genetic diversity and allele fixation (HE: 0.35 to 0.36 and FIS: -0.11 to -0.01, respectively) were detected. Conversely, low genetic differentiation (FST: 0.01 to 0.05) was also observed, indicating a high gene flow among subpopulations. These results contribute to the establishment of adequate conservation and breeding strategies for Cape gooseberry and closely related Physalis species.


Assuntos
Genoma de Planta/genética , Physalis/classificação , Physalis/genética , Solanum lycopersicum/genética , Solanum tuberosum/genética , Marcadores Genéticos/genética , Técnicas de Genotipagem , Polimorfismo de Nucleotídeo Único/genética , Análise de Componente Principal
3.
BMC Plant Biol ; 19(1): 533, 2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-31795941

RESUMO

BACKGROUND: The genus Elaeis has two species of economic importance for the oil palm agroindustry: Elaeis oleifera (O), native to the Americas, and Elaeis guineensis (G), native to Africa. This work provides to our knowledge, the first association mapping study in an interspecific OxG oil palm population, which shows tolerance to pests and diseases, high oil quality, and acceptable fruit bunch production. RESULTS: Using genotyping-by-sequencing (GBS), we identified a total of 3776 single nucleotide polymorphisms (SNPs) that were used to perform a genome-wide association analysis (GWAS) in 378 OxG hybrid population for 10 agronomic traits. Twelve genomic regions (SNPs) were located near candidate genes implicated in multiple functional categories, such as tissue growth, cellular trafficking, and physiological processes. CONCLUSIONS: We provide new insights on genomic regions that mapped on candidate genes involved in plant architecture and yield. These potential candidate genes need to be confirmed for future targeted functional analyses. Associated markers to the traits of interest may be valuable resources for the development of marker-assisted selection in oil palm breeding.


Assuntos
Arecaceae/genética , Produção Agrícola , Produtos Agrícolas/genética , Genótipo , Arecaceae/anatomia & histologia , Arecaceae/fisiologia , Produtos Agrícolas/anatomia & histologia , Produtos Agrícolas/fisiologia , Estudo de Associação Genômica Ampla , Hibridização Genética , Melhoramento Vegetal
4.
Plant Gene ; 4: 29-37, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26550601

RESUMO

The genus Physalis is common in the Americas and includes several economically important species, among them Physalis peruviana that produces appetizing edible fruits. We studied the genetic diversity and population structure of P. peruviana and characterized 47 accessions of this species along with 13 accessions of related taxa consisting of 222 individuals from the Colombian Corporation of Agricultural Research (CORPOICA) germplasm collection, using Conserved Orthologous Sequences (COSII) and Immunity Related Genes (IRGs). In addition, 642 Single Nucleotide Polymorphism (SNPs) markers were identified and used for the genetic diversity analysis. A total of 121 alleles were detected in 24 InDels loci ranging from 2 to 9 alleles per locus, with an average of 5.04 alleles per locus. The average number of alleles in the SNP markers was two. The observed heterozygosity for P. peruviana with InDel and SNP markers was higher (0.48 and 0.59) than the expected heterozygosity (0.30 and 0.41). Interestingly, the observed heterozygosity in related taxa (0.4 and 0.12) was lower than the expected heterozygosity (0.59 and 0.25). The coefficient of population differentiation FST was 0.143 (InDels) and 0.038 (SNPs), showing a relatively low level of genetic differentiation among P. peruviana and related taxa. Higher levels of genetic variation were instead observed within populations based on the AMOVA analysis. Population structure analysis supported the presence of two main groups and PCA analysis based on SNP markers revealed two distinct clusters in the P. peruviana accessions corresponding to their state of cultivation. In this study, we identified molecular markers useful to detect genetic variation in Physalis germplasm for assisting conservation and crossbreeding strategies.

5.
BMC Genomics ; 13: 151, 2012 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-22533342

RESUMO

BACKGROUND: Physalis peruviana commonly known as Cape gooseberry is a member of the Solanaceae family that has an increasing popularity due to its nutritional and medicinal values. A broad range of genomic tools is available for other Solanaceae, including tomato and potato. However, limited genomic resources are currently available for Cape gooseberry. RESULTS: We report the generation of a total of 652,614 P. peruviana Expressed Sequence Tags (ESTs), using 454 GS FLX Titanium technology. ESTs, with an average length of 371 bp, were obtained from a normalized leaf cDNA library prepared using a Colombian commercial variety. De novo assembling was performed to generate a collection of 24,014 isotigs and 110,921 singletons, with an average length of 1,638 bp and 354 bp, respectively. Functional annotation was performed using NCBI's BLAST tools and Blast2GO, which identified putative functions for 21,191 assembled sequences, including gene families involved in all the major biological processes and molecular functions as well as defense response and amino acid metabolism pathways. Gene model predictions in P. peruviana were obtained by using the genomes of Solanum lycopersicum (tomato) and Solanum tuberosum (potato). We predict 9,436 P. peruviana sequences with multiple-exon models and conserved intron positions with respect to the potato and tomato genomes. Additionally, to study species diversity we developed 5,971 SSR markers from assembled ESTs. CONCLUSIONS: We present the first comprehensive analysis of the Physalis peruviana leaf transcriptome, which will provide valuable resources for development of genetic tools in the species. Assembled transcripts with gene models could serve as potential candidates for marker discovery with a variety of applications including: functional diversity, conservation and improvement to increase productivity and fruit quality. P. peruviana was estimated to be phylogenetically branched out before the divergence of five other Solanaceae family members, S. lycopersicum, S. tuberosum, Capsicum spp, S. melongena and Petunia spp.


Assuntos
Modelos Genéticos , Physalis/genética , Transcriptoma , Bases de Dados Genéticas , Etiquetas de Sequências Expressas , Biblioteca Gênica , Genoma de Planta , Solanum lycopersicum/genética , Repetições de Microssatélites , Filogenia , Physalis/classificação , Folhas de Planta/genética , Análise de Sequência de DNA , Solanum tuberosum/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA