RESUMO
Mezcal is an alcoholic artisanal drink made from agave plants in Mexico. Its production causes the generation of wastewater called vinasses, which are highly polluting residues due to its concentration of organic matter as chemical oxygen demand (COD) (35,000-122,000 mg/L) and acidity (pH < 4). Due to their organic content, these residues can be used in dark fermentation to obtain biogas, which is rich in hydrogen. In this work, the acclimation of inoculum by means of a dark fermentation process, in the presence of toxic compounds from mezcal vinasses was studied. The strategy of increasing the initial concentration of vinasse in each treatment cycle in a sequencing batch reactor (SBR) reactor was applied. It was possible to obtain a maximum biogas production of 984 ± 187 mL/L, from vinasses (18,367 ± 1,200 mg COD/L), with an organic matter removal efficiency of 20 ± 1%. A maximum generation of volatile fatty acids (VFA) of 980 ± 538 mg/L equivalent to a production of 74 ± 21% of the influent concentration and removal rate of organic matter of 1,125 ± 234 mg COD/L d-1 equivalent to a removal efficiency of 20 ± 4% was obtained from vinasses with a concentration of 19,648 ± 1,702 mg COD/L.
Assuntos
Biocombustíveis , Eliminação de Resíduos Líquidos , Aclimatação , Anaerobiose , Reatores Biológicos , Ácidos Graxos Voláteis , Fermentação , MéxicoRESUMO
The biofiltration system over organic bed (BFOB) uses organic filter material (OFM) to treat municipal wastewater (MWW). This study evaluated the performance of a BFOB system employing mesquite wood chips (Prosopis) as OFM. It also evaluated the effect of hydraulic loading rates (HLRs) in order to achieve the operational parameters required to remove organic matter, suspended material, and pathogens, thus meeting Mexican and US regulations for reuse in irrigation. Two biofilters (BFs) connected in series were installed; the first one aerated (0.62 m(3)air m(-2)h(-1)) and the second one unaerated. The source of MWW was a treatment plant located in Durango, Mexico. For 200 days, three HLRs (0.54, 1.07, and 1.34 m(3)m(-2)d(-1)) were tested. The maximum HLR at which the system showed a high removal efficiency of pollutants and met regulatory standards for reuse in irrigation was 1.07 m(3)m(-2)d(-1), achieving removal efficiencies of biochemical oxygen demand (BOD5) 92%, chemical oxygen demand (COD) 78%, total suspended solids (TSS) 95%, and four log units of fecal coliforms. Electrical conductivity in the effluent ensures that it would not cause soil salinity. Therefore, mesquite wood chips can be considered an innovative material suitable as OFM for BFs treating wastewaters.
Assuntos
Filtração/instrumentação , Prosopis/química , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Poluentes Químicos da Água/química , Madeira , Cidades , Filtração/métodos , México , SoloRESUMO
Based on results obtained in the laboratory a WWTP composed of a septic tank and an aerated percolating filter packed with organic media was built for a school. The system can treat 18 m3 d(-1) and was operated with a hydraulic loading rate of 0.078 (m3 m(-2) d(-1). For 360 days different operational conditions including start-up; stabilization; operation with aeration and non aeration; effect of rainy season, breaks from activities due to holidays and restart; were monitored and described in the article. Once stabilized, the system was able to remove, without the need for mechanical aeration, 97% of BOD5, 71% of COD, 93% of TKN, 11% of PO(4-)-P, 95% of TSS, 96% of VSS, in addition to having a removal efficiency of 4 log units of Faecal Coliforms (FC) and 100% helminthes eggs (HE). With this quality, the treated wastewater can be chlorinated and reused to irrigate green areas and/or in toilets. Although sanitary wastewater has a high concentration of Total-N (250 mg L(-1)) and a C/N ratio of less than 1, the system removed 65% of Total-N. Finally it was observed that after non activity periods, there was neither system failure nor the need to re-stabilize the system.
Assuntos
Filtração/métodos , Instituições Acadêmicas , Eliminação de Resíduos Líquidos/métodos , Purificação da Água/métodosRESUMO
The performance of aerobic submerged packed bed reactors was studied for the treatment of domestic wastewater using different kinds of packing materials with high specific areas (760-1,200 m(2)/m(3)). The tested materials were ceramic spheres, crushed tezontle, grains of high density polyethylene (HDPE), of low density polyethylene (LDPE) and of polypropylene (PP), cubes of polyurethane (PU) and polyethylene tape (SESSIL). The bioreactors were operated in continuous regime, applying organic loads in the range of 0.8-6.0 g COD.m(-2).d(-1). The obtained specific COD removal rates were very similar in all the reactors when they were operated at organic loads up to 2.0 g COD.m(-2).d(-1), after which differences in effectiveness appeared and the best results were determined in the reactors with SESSIL, LDPE and PU. Very low TSS, O&G and turbidity were obtained in all the effluents. The NH(3)-N and TN removals were dependent on the dissolved oxygen (DO) concentration and the removals at DO of 5 mg/l were 84-99% and 61-74% respectively. The best removals were determined in the reactors with PU, SESSIL and LDPE. The reactor with tezontle had also a good performance when operated with loads up to 1.0 g TN.m(-2).d(-1). The best phosphate removals (38-49%) were obtained in the reactors with PU, tezontle, ceramic sheres and SESSIL.
Assuntos
Reatores Biológicos/classificação , Resíduos Industriais , Eliminação de Resíduos Líquidos/métodos , Resíduos , Biomassa , Recuperação e Remediação Ambiental/métodos , México , Nitrogênio/isolamento & purificação , Fósforo/isolamento & purificação , Polietileno , Polipropilenos , Poliuretanos , Esgotos , Poluentes Químicos da Água , Purificação da Água/métodosRESUMO
Effect of aeration rate on the removal of organic matter and nitrogen and on the formation of NH3, N2O and N2 was studied for an extensive biofiltration system packed with an organic media, which was used to treat pig manure. The results show high removal of BOD5 and TSS (99 and > or = 98%), independently of the four aeration rate tested (3.4-34 m3/m2 x h). Aeration rate > or = 4.4 m/h resulted in high ammonia stripping during start-up (> or = 1.0 kg NH3-N/m3 of swine manure treated), while using 3.4 m/h only 0.3 kg NH3-N/m3 were stripped. Complete nitrification was achieved after day 100 of operation, except in the biofilter with the lowest aeration rate. Simultaneous denitrification established in all the biofilters. Applying an aeration rate of 9.4 m/h up to 1.2 kg nitrogen was removed in the form of N2 for each m3 of swine manure treated. Contrary to the expectations, N2 formation and release increased with the aeration rate. This particular behaviour seems to be related to the punctual accumulation of water layers inside the biofilters, caused by the air force flowing in the opposite direction to the water flux. N2O production was quite similar in all biofilters (between 0.25-0.36 kg N2O-N/m3 of swine manure treated).