Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(22): 15902-15915, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38775219

RESUMO

Activation of O2 by subnanometer metal clusters is a fundamental step in the reactivity and oxidation processes of single-cluster catalysts. In this work, we examine the adsorption and dissociation of O2 on RenPtm (n + m = 5) clusters supported on rutile TiO2(110) using DFT calculations. The adhesion energies of RenPtm clusters on the support are high, indicating significant stability of the supported clusters. Furthermore, the bimetallic Re-Pt clusters attach to the surface through the Re atoms. The oxygen molecule was adsorbed on three sites of the supported systems: the metal cluster, the surface, and the interface. At the metal cluster site, the O2 molecule binds strongly to RenPtm clusters, especially on the Re-rich clusters. O2 activation occurs by charge transfer from the metal atoms to the molecule. The dissociation of O2 on the RenPtm clusters is an exothermic process with low barriers. As a result, sub-nanometer Re-Pt clusters can be susceptible to oxidation. Similar results are obtained at the metal-support interface, where both the surface and cluster transfer charge to O2. To surface sites, molecular oxygen is adsorbed onto the Ti5c atoms with moderate adsorption energies. The polarons, which are produced by the interaction between the metal cluster and the surface, participate in the activation of the molecule. However, dissociating O2 in these sites is challenging due to the endothermic nature of the process and the high energy barriers involved. Our findings provide novel insights into the reactivity of supported clusters, specifically regarding the O2 activation by Re-Pt clusters on rutile TiO2(110).

2.
Phys Chem Chem Phys ; 26(15): 11277-11282, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38251447

RESUMO

Chirality is a geometric property of matter that can be present at different scales, especially at the nanoscale. Here, we investigate the manifestation of chirality in electronic transport through a molecular junction. Spinless electronic transport through a chiral molecular junction is not enantiospecific. However, when a chiral metal cluster, C3-Au34, is attached to the source electrode, a different response is obtained in spinless electronic transport between R and L systems: this indicates the crucial role of chiral clusters in triggering enantiospecific spinless electronic transport. In contrast, when an achiral metal cluster, C3v-Au34, is attached, no change in conductance occurs between enantiomeric systems. Using the non-equilibrium green's function method, we characterized this phenomenon by calculating the transmission and conductance of spin-unpolarized electrons. Our theoretical results highlight the importance of metal clusters with specific sizes and chiral structures in electronic transport and support previously published experimental results that exhibited enantiospecific scanning tunneling measurements with intrinsically chiral tips.

3.
Langmuir ; 38(18): 5418-5427, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35447033

RESUMO

Cysteine-protected metal nanoparticles (NPs) have shown interesting physicochemical properties of potential utility in biomedical applications and in the understanding of protein folding. Herein, cysteine interaction with gold, silver, and copper NPs is characterized by Raman spectroscopy and density functional theory calculations to elucidate the molecular conformation and adsorption sites for each metal. The experimental analysis of Raman spectra upon adsorption with respect to free cysteine indicates that while the C-S bond and carboxyl group are similarly affected by adsorption on the three metal NPs, the amino group is sterically influenced by the electronegativity of each metal, causing a greater modification in the case of gold NPs. A theoretical approach that takes into consideration intermolecular interactions using two cysteine molecules is proposed using a S-metal-S interface motif anchored to the metal surface. These interactions generate the stabilization of an organo-metallic complex that combines gauche (PH) and anti (PC) rotameric conformers of cysteine on the surface of all three metals. Similarities between the calculated Raman spectra and experimental data confirm the thiol and carboxyl as adsorption groups for gold, silver, and copper NPs and suggest the formation of monomeric "staple motifs" that have been found in the protecting monolayer of atomic-precise thiolate-capped metal nanoclusters.


Assuntos
Ouro , Nanopartículas Metálicas , Adsorção , Cobre/química , Cisteína/química , Ouro/química , Nanopartículas Metálicas/química , Prata/química , Análise Espectral Raman
4.
Phys Chem Chem Phys ; 21(28): 15286-15296, 2019 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-31090767

RESUMO

Controlling Ce4+ to Ce3+ electronic reducibility in a rare-earth binary oxide such as CeO2 has enormous applications in heterogeneous catalysis, where a profound understanding of reactivity and selectivity at the atomic level is yet to be reached. Thus, in this work we report an extensive DFT-based Basin Hopping global optimization study to find the most stable bimetallic Pt-Cu clusters supported on the CeO2(111) oxide surface, involving up to 5 atoms in size for all compositions. Our PBE+U global optimization calculations indicate a preference for Pt-Cu clusters to adopt 2D planar geometries parallel to the oxide surface, due to the formation of strong metal bonds to oxygen surface sites and charge transfer effects. The calculated adsorption energy values (Eads) for both mono- and bimetallic systems are of the order of 1.79 up to 4.07 eV, implying a strong metal cluster interaction with the oxide surface. Our calculations indicate that at such sub-nanometer sizes, the number of Ce4+ surface atoms reduced to Ce3+ cations is mediated by the amount of Cu atoms within the cluster, reaching a maximum of three Ce3+ for a supported Cu5 cluster. Our computational results have critical implications on the continuous understanding of the strong metal-support interactions over reducible oxides such as CeO2, as well as the advancement of frontier research areas such as heterogeneous single-atom catalysts (SAC) and single-cluster catalysts (SCC).

5.
Phys Chem Chem Phys ; 20(25): 17071-17080, 2018 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-29896596

RESUMO

Transition and noble metal clusters have proven to be critical novel materials, potentially offering major advantages over conventional catalysts in a range of value-added catalytic processess such as carbon dioxide transformation to methanol. In this work, a systematic computational study of CO2 adsorption on gas-phase Cu4-xPtx (x = 0-4) clusters is performed. An exhaustive potential energy surface exploration is initially performed using our recent density functional theory basin-hopping global optimization implementation. Ground-state and low-lying energy isomers are identified for Cu4-xPtx clusters. Secondly, a CO2 molecule adsorption process is analyzed on the ground-state Cu4-xPtx configurations, as a function of cluster composition. Our results show that the gas-phase linear CO2 molecule is deformed upon adsorption, with its bend angle varying from about 132° to 139°. Cu4-xPtx cluster geometries remain unchanged after CO2 adsorption, with the exception of Cu3Pt1 and Pt4 clusters. For these particular cases, a structural conversion between the ground-state geometry and the corresponding first isomer configurations is found to be assisted by the CO2 adsorption. For all clusters, the energy barriers between the ground-state and first isomer structures are explored. Our calculated CO2 adsorption energies are found to be larger for Pt-rich clusters, exhibiting a volcano-type plot. The overall effect of a hybrid functional including dispersion forces is also discussed.

6.
Phys Chem Chem Phys ; 19(27): 17845-17855, 2017 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-28660967

RESUMO

Transition metal particles dispersed on oxide supports are used as heterogeneous catalysts in numerous applications. One example is platinum clusters supported on ceria which is used in automotive catalysis. Although control at the nm-scale is desirable to open new technological possibilities, there is limited knowledge both experimentally and theoretically regarding the geometrical structure and stability of sub-nanometer platinum clusters supported on ceria. Here we report a systematic, Density Functional Theory (DFT) study on the growth trends of CeO2(111) supported PtN clusters (N = 1-10). Using a global optimization methodology as a guidance tool to locate putative global minima, our results show a clear preference for 2D planar structures up to size Pt8. It is followed by a structural transition to 3D configurations at larger sizes. This remarkable trend is explained by the subtle competition between the formation of strong Pt-O bonds and the cluster internal Pt-Pt bonds. Our calculations show that the reducibility of CeO2(111) provides a mechanism to anchor PtN clusters where they become oxidized in a two-way charge transfer mechanism: (a) an oxidation process, where Osurface atoms withdraw charge from Pt atoms forming Pt-O bonds, (b) surface Ce4+ atoms are reduced, leading to Ce3+. The active role of the CeO2(111) support in modifying the structural and eventually the chemical properties of sub-nanometer PtN clusters is computationally demonstrated.

7.
Nanoscale ; 5(22): 10956-62, 2013 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-24061047

RESUMO

The structure and optical properties of a set of R-1,1'-binaphthyl-2,2'-dithiol (R-BINAS) monosubstituted A-Au38(SCH3)24 clusters are studied by means of time dependent density functional theory (TD-DFT). While it was proposed earlier that BINAS selectively binds to monomer motifs (SR-Au-SR) covering the Au23 core, our calculations suggest a binding mode that bridges two dimer (SR-Au-SR-Au-RS) motifs. The more stable isomers show a negligible distortion induced by BINAS adsorption on the Au38(SCH3)24 cluster which is reflected by similar optical and Circular Dichroism (CD) spectra to those found for the parent cluster. The results furthermore show that BINAS adsorption does not enhance the CD signals of the Au38(SCH3)24 cluster.

8.
Phys Rev Lett ; 96(11): 116802, 2006 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-16605850

RESUMO

We make use of first-principles calculations to study the effects of functionalization and compression on the electronic properties of 2D lattices of Au nanoparticles. We consider Au38 particles capped by methylthiol molecules and possibly functionalized by the dithiolated conjugated molecules benzenedimethanethiol and benzenedicarbothialdehyde. We find that the nonfunctionalized lattices are insulating, with negligible band dispersions even for a compression of 20% of the lattice constant. Distinct behaviors of the dispersion of the lowest conduction band as a function of compression are predicted for functionalized lattices: The band dispersion of the benzenedimethanethiol-functionalized lattice increases considerably with compression, while that of the benzenedicarbothialdehyde-functionalized lattice decreases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA