Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Geohealth ; 7(3): e2022GH000727, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36960326

RESUMO

Brazil has been severely affected by the COVID-19 pandemic. Temperature and humidity have been purported as drivers of SARS-CoV-2 transmission, but no consensus has been reached in the literature regarding the relative roles of meteorology, governmental policy, and mobility on transmission in Brazil. We compiled data on meteorology, governmental policy, and mobility in Brazil's 26 states and one federal district from June 2020 to August 2021. Associations between these variables and the time-varying reproductive number (R t ) of SARS-CoV-2 were examined using generalized additive models fit to data from the entire 15-month period and several shorter, 3-month periods. Accumulated local effects and variable importance metrics were calculated to analyze the relationship between input variables and R t . We found that transmission is strongly influenced by unmeasured sources of between-state heterogeneity and the near-recent trajectory of the pandemic. Increased temperature generally was associated with decreased transmission and increased specific humidity with increased transmission. However, the impacts of meteorology, policy, and mobility on R t varied in direction, magnitude, and significance across our study period. This time variance could explain inconsistencies in the published literature to date. While meteorology weakly modulates SARS-CoV-2 transmission, daily or seasonal weather variations alone will not stave off future surges in COVID-19 cases in Brazil. Investigating how the roles of environmental factors and disease control interventions may vary with time should be a deliberate consideration of future research on the drivers of SARS-CoV-2 transmission.

2.
BMC Med ; 17(1): 171, 2019 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-31474220

RESUMO

BACKGROUND: In 2015, the Zika virus spread from Brazil throughout the Americas, posing an unprecedented challenge to the public health community. During the epidemic, international public health officials lacked reliable predictions of the outbreak's expected geographic scale and prevalence of cases, and were therefore unable to plan and allocate surveillance resources in a timely and effective manner. METHODS: In this work, we present a dynamic neural network model to predict the geographic spread of outbreaks in real time. The modeling framework is flexible in three main dimensions (i) selection of the chosen risk indicator, i.e., case counts or incidence rate; (ii) risk classification scheme, which defines the high-risk group based on a relative or absolute threshold; and (iii) prediction forecast window (1 up to 12 weeks). The proposed model can be applied dynamically throughout the course of an outbreak to identify the regions expected to be at greatest risk in the future. RESULTS: The model is applied to the recent Zika epidemic in the Americas at a weekly temporal resolution and country spatial resolution, using epidemiological data, passenger air travel volumes, and vector habitat suitability, socioeconomic, and population data for all affected countries and territories in the Americas. The model performance is quantitatively evaluated based on the predictive accuracy of the model. We show that the model can accurately predict the geographic expansion of Zika in the Americas with the overall average accuracy remaining above 85% even for prediction windows of up to 12 weeks. CONCLUSIONS: Sensitivity analysis illustrated the model performance to be robust across a range of features. Critically, the model performed consistently well at various stages throughout the course of the outbreak, indicating its potential value at any time during an epidemic. The predictive capability was superior for shorter forecast windows and geographically isolated locations that are predominantly connected via air travel. The highly flexible nature of the proposed modeling framework enables policy makers to develop and plan vector control programs and case surveillance strategies which can be tailored to a range of objectives and resource constraints.


Assuntos
Epidemias , Redes Neurais de Computação , Infecção por Zika virus/epidemiologia , América/epidemiologia , Brasil , Humanos , Saúde Pública
3.
Cell ; 178(5): 1057-1071.e11, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31442400

RESUMO

The Zika epidemic in the Americas has challenged surveillance and control. As the epidemic appears to be waning, it is unclear whether transmission is still ongoing, which is exacerbated by discrepancies in reporting. To uncover locations with lingering outbreaks, we investigated travel-associated Zika cases to identify transmission not captured by reporting. We uncovered an unreported outbreak in Cuba during 2017, a year after peak transmission in neighboring islands. By sequencing Zika virus, we show that the establishment of the virus was delayed by a year and that the ensuing outbreak was sparked by long-lived lineages of Zika virus from other Caribbean islands. Our data suggest that, although mosquito control in Cuba may initially have been effective at mitigating Zika virus transmission, such measures need to be maintained to be effective. Our study highlights how Zika virus may still be "silently" spreading and provides a framework for understanding outbreak dynamics. VIDEO ABSTRACT.


Assuntos
Epidemias , Genômica/métodos , Infecção por Zika virus/epidemiologia , Aedes/virologia , Animais , Cuba/epidemiologia , Humanos , Incidência , Controle de Mosquitos , Filogenia , RNA Viral/química , RNA Viral/metabolismo , Análise de Sequência de RNA , Viagem , Índias Ocidentais/epidemiologia , Zika virus/classificação , Zika virus/genética , Zika virus/isolamento & purificação , Infecção por Zika virus/transmissão , Infecção por Zika virus/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA