Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 25(21): 14992-14999, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37211874

RESUMO

Magnetic antiperovskites, having chiral noncollinear antiferromagnetic ordering, have shown remarkable properties that range from negative thermal expansion to anomalous Hall effects. Nevertheless, details on the electronic structure, related to the oxidation states and the octahedral center's site effects, are still scarce. Here, we show a theoretical study, based on first-principles calculations in the framework of density-functional theory (DFT), on the electronic properties associated with the nitrogen site effects on the structural, electronic, magnetic, and topological degrees of freedom. Thus, we show that the nitrogen vacancy increases the value of the anomalous Hall conductivity and retains the chiral Γ4g antiferromagnetic ordering. Moreover, we reveal, based on the Bader charges and the electronic structure analysis, the negative and positive oxidation states of the Ni- and Mn-sites, respectively. This is in agreement with the expected A3α+Bß-Xδ- oxidation states to satisfy charge neutrality in antiperovskites, but the negative charge is rare for transition metals. Finally, we extrapolate our findings on the oxidation states to several Mn3BN compounds, showing that the antiperovskite structure is an ideal platform to encounter negative oxidation states for metals sitting at the corner B-sites.

2.
Phys Chem Chem Phys ; 23(32): 17142-17149, 2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34179906

RESUMO

Oxynitride perovskites of the type ABO2N have attracted considerable attention thanks to their potential ferroelectric behavior and tunable bandgap energy, making them ideal candidates for photocatalysis processes. Therefore, in order to shed light on the origin of their ferroelectric response, here we report a complete analysis of the structural and vibrational properties of SrNbO2N and SrTaO2N oxynitrides. By employing first-principles calculations, we analyzed the symmetry in-equivalent structures considering the experimentally reported parent I4/mcm space group (with a phase a0a0c- in Glazer's notation). Based on the I4/mcm reference within the 20-atoms unit-cell, we found and studied the ensemble of structures where different octahedral anionic orderings are allowed by symmetry. Thus, by exploring the vibrational landscape of the cis- and trans-type configuration structures and supported by the ionic eigendisplacements and the Born effective charges, we explained the mechanism responsible for the appearance of stable ferroelectric phases in both anionic orderings. The latter goes from covalent-driven in the trans-type ordering to the geometrically-driven in the cis-type configuration. Finally, we found in both cases that the biaxial xy epitaxial strain considerably enhances such ferroelectric response.

3.
Phys Rev Lett ; 121(11): 117601, 2018 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-30265112

RESUMO

Herewith, first-principles calculations based on density functional theory are used to describe the ideal magnetization reversal through polarization switching in BaCuF_{4} which, according to our results, could be accomplished close to room temperature. We also show that this ideal coupling is driven by a single soft mode that combines both polarization, and octahedral rotation. The later being directly coupled to the weak ferromagnetism of BaCuF_{4}. This, added to its strong Jahn-Teller distortion and its orbital ordering, makes this material a very appealing prototype for crystals in the ABX_{4} family for multifunctional applications. The described mechanism behaves ideally as it couples the ferroelectric and the magnetic properties naturally and it has not been reported previously.

4.
Phys Chem Chem Phys ; 20(26): 17799-17808, 2018 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-29922777

RESUMO

Geometrical and vibrational characterization of magnesium hydroxide was performed using density functional theory. Four possible crystal symmetries were explored: P3[combining macron] (No. 147, point group -3), C2/m (No. 12, point group 2), P3m1 (No. 156, point group 3m) and P3[combining macron]m1 (No. 164, point group -3m) which are the currently accepted geometries found in the literature. While a lot of work has been performed on Mg(OH)2, in particular for the P3[combining macron]m1 phase, there is still a debate on the observed ground state crystal structure and the anharmonic effects of the OH vibrations on the stabilization of the crystal structure. In particular, the stable positions of hydrogen are not yet defined precisely, which have implications in the crystal symmetry, the vibrational excitations, and the thermal stability. Previous work has assigned the P3[combining macron]m1 polymorph as the low energy phase, but it has also proposed that hydrogens are disordered and they could move from their symmetric position in the P3[combining macron]m1 structure towards P3[combining macron]. In this paper, we examine the stability of the proposed phases by using different descriptors. We compare the XRD patterns with reported experimental results, and a fair agreement is found. While harmonic vibrational analysis shows that most phases have imaginary modes at 0 K, anharmonic vibrational analysis indicates that at room temperature only the C2/m phase is stabilized, whereas at higher temperatures, other phases become thermally competitive.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA