Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Lab Anim ; 58(4): 302-312, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39075859

RESUMO

The aim was to determine changes in clinical parameters, glucose concentration, cortisol and behavior in colony queens in no music conditions compared with exposing to different genres of music. Mixed breed clinically healthy queens (N = 9) were used. Queens were studied under no music conditions (control=CON) and auditory enrichment: Soft Rock (M1), Motown (M2), Pop (M3), Frenchcore (M4) and music that was composed to be species-appropriate for cats (M5). The queens underwent auditory enrichment, including three days of silence (D1-3), five consecutive days of auditory enrichment (D4-8) and three days of silence (D9-11). We recorded clinical parameters, glucose, cortisol and behavior. Data were analyzed with GLIMMIX. Queens showed a significant increase of femoral pulse during exposure to M1, M2 and M4; and respiratory rate during exposure to M1, M2, M3 and M4 compared with CON. There was a significant increase in glucose during exposure to M2 and M5 compared with CON. However, there was a significant decrease in glucose during exposure to M4 compared with CON. There was a significant decrease in cortisol during exposure to M2 and M5 compared with CON. When we evaluated the ethogram, we observed a significant decrease in the percentage of interaction with other cats in M1 and M2 compared with CON. In addition, we found a significant decrease in the purring in M1 and M3 compared with CON. Auditory enrichment can be beneficial in situations that cause discomfort and distress in colony cats, such as in feline hospitalization; however, it should be acknowledged that there are limits to direct extrapolation.


Assuntos
Hidrocortisona , Música , Animais , Gatos/fisiologia , Feminino , Hidrocortisona/sangue , Comportamento Animal/fisiologia , Glicemia/metabolismo
2.
Heliyon ; 8(6): e09738, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35770150

RESUMO

Methane is a potent but short-lived greenhouse gas targeted for short-term amelioration of climate change, with enteric methane emitted by ruminants being the most important anthropogenic source of methane. Ruminant production also releases nitrogen to the environment, resulting in groundwater pollution and emissions of greenhouse gas nitrous oxide. We hypothesized that inhibiting rumen methanogenesis in dairy cows with chemical inhibitor 3-nitrooxypropanol (3-NOP) would redirect metabolic hydrogen towards synthesis of microbial amino acids. Our objective was to investigate the effects of 3-NOP on methane emissions, rumen fermentation and nitrogen metabolism of dairy cows fed true protein or urea as nitrogen sources. Eight ruminally-cannulated cows were fed a plant protein or a urea-containing diet during a Control experimental period followed by a methanogenesis inhibition period with 3-NOP supplementation. All diets were unintentionally deficient in nitrogen, and diets supplemented with 3-NOP had higher fiber than diets fed in the Control period. Higher dietary fiber content in the 3-NOP period would be expected to cause higher methane emissions; however, methane emissions adjusted by dry matter and digested organic matter intake were 54% lower with 3-NOP supplementation. Also, despite of the more fibrous diet, 3-NOP shifted rumen fermentation from acetate to propionate. The post-feeding rumen ammonium peak was substantially lower in the 3-NOP period, although that did not translate into greater rumen microbial protein production nor lesser nitrogen excretion in urine. Presumably, because all diets resulted in low rumen ammonium, and intake of digestible organic matter was lower in the 3-NOP period compared to the Control period, the synthesis of microbial amino acids was limited by nitrogen and energy, precluding the evaluation of our hypothesis. Supplementation with 3-NOP was highly effective at decreasing methane emissions with a lower quality diet, both with true protein and urea as nitrogen sources.

3.
Animals (Basel) ; 10(5)2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32370008

RESUMO

There is interest in identifying natural products capable of manipulating rumen microbial activity to develop new feed additives for ruminant nutrition as a strategy to reduce methane. Two trials were performed using the in vitro gas production technique to evaluate the interaction of substrate (n = 5) and additive (n = 6, increasing doses: 0, 0.3, 3, 30, and 300 µL/L of essential oils-EO-of Lippia turbinata or Tagetes minuta, and monensin at 1.87 mg/L). The two EO utilized were selected because they differ markedly in their chemical composition, especially in the proportion of oxygenated compounds. For both EO, the interaction between the substrate and additive was significant for all variables; however, the interaction behaved differently for the two EO. Within each substrate, the response was dose-dependent, without effects at a low level of EO and a negative outcome at the highest dose. The intermediate dose (30 µL/L) inhibited methane with a slight reduction on substrate digestibility, with L. turbinata being more effective than T. minuta. It is concluded that the effectiveness of the EO to reduce methane production depends on interactions between the substrate that is fermented and the additive dose that generates different characteristics within the incubation medium (e.g., pH); and thus, the chemical nature of the compounds of the EO modulates the magnitude of this response.

4.
Int J Endocrinol ; 2018: 7865072, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29853883

RESUMO

Insulinomas are pancreatic neuroendocrine tumors (pNET), usually benign. Akt/p27kip1 is an intracellular pathway overexpressed in many pNET. There are no data regarding its expression in human insulinomas. We aimed to investigate the expression of Akt and p27kip1 in 24 human insulinomas and to compare them to their expression in normal surrounding islets. Staining was performed on embedded paraffin tissue using polyclonal antibodies against total Akt, p-Akt, p27kip1, and pp27kip1. p-Akt was the predominant form in insulinomas; they presented lower Akt and p-Akt expression than normal islets in 83.3% and 87.5% of tumors, respectively. p27kip1 and pp27kip1 were mainly cytoplasmic in both insulinomas and normal tissue. Cytoplasmic pp27kip1 staining was higher in insulinomas and surprisingly nearly half of the insulinomas also presented nuclear p27kip1 (p = 0.029). No differences were observed in the subcellular localization of p27kip1 and activation of Akt between benign and malignant insulinomas. The low expression of Akt seen in insulinomas might explain the usual benign behavior of this type of pNET. Cytoplasmic p27kip1 in both insulinomas and normal islet cells could reflect the low rate of replication of beta cells, while nuclear p27kip1 would seem to indicate stabilization and nuclear anchoring of the cyclin D-Cdk4 complex. Our data seem to suggest that the Akt pathway is not involved in human insulinoma tumorigenesis.

5.
Gene ; 532(2): 186-91, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-24076352

RESUMO

Gaucher disease (GD) is caused by mutations in the GBA gene that confer a deficient level of activity of glucocerebrosidase (GCase). This deficiency leads to accumulation of the glycolipid glucocerebroside in the lysosomes of cells of monocyte/macrophage system. Type I GD is the mildest form and is characterized by the absence of neuronopathic affection. Bone compromise in Gaucher disease patients is the most disabling aspect of the disease. However, pathophysiological aspects of skeletal alterations are still poorly understood. The homeostasis of bone tissue is maintained by the balanced processes of bone resorption by osteoclasts and formation by osteoblasts. We decided to test whether bone resorption and/or bone formation could be altered by the use of a chemical in vitro murine model of Gaucher disease. We used two sources of cells from monocyte/macrophages lineage isolated from normal mice, splenocytes (S) and peritoneal macrophages (PM), and were exposed to CBE, the inhibitor of GCase (S-CBE and PM-CBE, respectively). Addition of both conditioned media (CM) from S-CBE and PM-CBE induced the differentiation of osteoclasts precursors from bone marrow to mature and functional osteoclasts. TNF-α could be one of the factors responsible for this effect. On the other hand, addition of CM to an osteoblast cell culture resulted in a reduction in expression of alkaline phosphatase and mineralization process. In conclusion, these results suggest implication of changes in both bone formation and bone resorption and are consistent with the idea that both sides of the homeostatic balance are affected in GD.


Assuntos
Doença de Gaucher/patologia , Osteoblastos/metabolismo , Osteoclastos/fisiologia , Animais , Antígenos de Diferenciação/metabolismo , Células da Medula Óssea/fisiologia , Calcificação Fisiológica , Diferenciação Celular , Células Cultivadas , Meios de Cultivo Condicionados , Doença de Gaucher/induzido quimicamente , Doença de Gaucher/metabolismo , Inositol/análogos & derivados , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteólise/metabolismo , Fator de Necrose Tumoral alfa/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA