Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 13: 986247, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36161011

RESUMO

The common bean (Phaseolus vulgaris L.) is the most important grain legume in the human diet, mainly in Africa and Latin America. Argentina is one of the five major producers of the common bean in the world, and the main cultivation areas are concentrated in the northwestern provinces of this country. Crop production of the common bean is often affected by biotic factors like some endemic fungal diseases, which exert a major economic impact on the region. The most important fungal diseases affecting the common bean in Argentina are white mold caused by Sclerotinia sclerotiorum, angular leaf spot caused by Pseudocercospora griseola, web blight and root rot caused by Rhizoctonia solani, which can cause production losses of up to 100% in the region. At the present, the most effective strategy for controlling these diseases is the use of genetic resistance. In this sense, population study and characterization of fungal pathogens are essential for developing cultivars with durable resistance. In this review we report diversity studies carried out on these three fungal pathogens affecting the common bean in northwestern Argentina, analyzing more than 200 isolates by means of molecular, morphological and pathogenic approaches. Also, the screening of physiological resistance in several common bean commercial lines and wild native germplasm is reviewed. This review contributes to the development of sustainable management strategies and cultural practices in bean production aimed to minimize yield losses due to fungal diseases in the common bean.

2.
Plants (Basel) ; 11(13)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35807671

RESUMO

This study aimed to survey the occurrence of eight grapevine viruses in commercial vineyards located in the Calchaquíes Valleys in the northwest region of Argentina. A total of 103 samples of mature canes of vines showing either none or some viral-like symptoms were randomly collected. The samples were tested by RT-PCR/PCR-based assays for the screening of the following viruses: Grapevine fanleaf virus (GFLV), Grapevine leafroll-associated viruses (GLRaV-1, -2, -3, -4), Grapevine virus A (GVA), Grapevine rupestris stem pitting-associated viruses (GRSPaV), and Grapevine red blotch virus (GRBV). Sixty percent of the analyzed samples showed infection with some of the analyzed viruses, except GRBV. GLRaV-3 and GFLV were the most frequent viruses, present in 34% and 21% of the positive samples, respectively. This study represents the first survey report of the presence of grapevine viruses in the region of the Calchaquíes Valleys and contributes to the knowledge to maintain the sanitary status of commercial vineyards in Argentina.

3.
BMC Genomics ; 18(1): 306, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28420340

RESUMO

BACKGROUND: The Andean cultivar Paloma is resistant to Mesoamerican and Andean races of Colletotrichum lindemuthianum, the fungal pathogen that causes the destructive anthracnose disease in common bean. Remarkably, Paloma is resistant to Mesoamerican races 2047 and 3481, which are among the most virulent races of the anthracnose pathogen. Most genes conferring anthracnose resistance in common bean are overcome by these races. The genetic mapping and the relationship between the resistant Co-Pa gene of Paloma and previously characterized anthracnose resistance genes can be a great contribution for breeding programs. RESULTS: The inheritance of resistance studies for Paloma was performed in F2 population from the cross Paloma (resistant) × Cornell 49-242 (susceptible) inoculated with race 2047, and in F2 and F2:3 generations from the cross Paloma (resistant) × PI 207262 (susceptible) inoculated with race 3481. The results of these studies demonstrated that a single dominant gene confers the resistance in Paloma. Allelism tests performed with multiple races of C. lindemuthianum showed that the resistance gene in Paloma, provisionally named Co-Pa, is independent from the anthracnose resistance genes Co-1, Co-2, Co-3, Co-4, Co-5, Co-6, Co-12, Co-13, Co-14, Co-15 and Co-16. Bulk segregant analysis using the SNP chip BARCBean6K_3 positioned the approximate location of Co-Pa in the lower arm of chromosome Pv01. Further mapping analysis located the Co-Pa gene at a 390 kb region of Pv01 flanked by SNP markers SS82 and SS83 at a distance of 1.3 and 2.1 cM, respectively. CONCLUSIONS: The results presented here showed that Paloma cultivar has a new dominant gene conferring resistance to anthracnose, which is independent from those genes previously described. The linkage between the Co-Pa gene and the SS82 and SS83 SNP markers will be extremely important for marker-assisted introgression of the gene into elite cultivars in order to enhance resistance.


Assuntos
Mapeamento Cromossômico , Resistência à Doença/genética , Phaseolus/crescimento & desenvolvimento , Phaseolus/genética , Doenças das Plantas/microbiologia , Cruzamento , Colletotrichum/genética , Colletotrichum/patogenicidade , Cruzamentos Genéticos , Marcadores Genéticos , Phaseolus/microbiologia , Doenças das Plantas/genética , Polimorfismo de Nucleotídeo Único/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA